

INFORMATION & SECURITY. An International Journal, Vol. 2, 1999, 12-22.

I&S

OPTIMIZATION OF THE MULTI-SOURCE DATA

FUSION SYSTEM FOR INTEGRATION ON

THE CANADIAN PATROL FRIGATE

Elisa SHAHBAZIAN, Louise BARIL, Jean-Rémi DUQUET

1. Introduction

Since 1991, the Research and Development (R&D) group at Lockheed Martin

Canada (LM Canada) has been developing and demonstrating Level 1, 2, 3 and 4 data

fusion, resource management and imaging technologies which will provide Observe-

Orient-Decide-Act (OODA) decision making capabilities/tools in Naval and Airborne

Command and Control (C2) for application on Canadian Patrol Frigates (CPF) and

Canada’s CP-140 (Aurora) fixed wing aircraft. Over the last three years LM Canada,

in collaboration with Canada’s Defence Research Establishment Valcartier (DREV),

has also established a generic expert system infrastructure and has demonstrated that

it is suitable for integrating these decision making technologies into real-time

Command and Control System (CCS). The Multi-Source Data Fusion (MSDF)

technology is the most mature among these decision making technologies and is

likely to be integrated onboard a currently fielded CCS the soonest. Over the last two

years the LM Canada R&D team has started the effort towards re-structuring and

optimizing the proof-of-concept MSDF algorithms to establish a prototype which will

be ready for integration on the existing platforms, specifically the CPF, and that can

perform real-time tracking and identification by the end of the year 2000. This

restructuring and optimization is occurring in phases.

First the existing proof-of-concept MSDF system was broken down into very basic

modular and independent components within the generic expert system infrastructure.

Each MSDF process (alignment, association, kinematic estimation, identification,

etc.) consists of one or more of these basic components. This architecture is designed

to enable independent modification and evaluation of each component. It is also ideal

for ensuring future growth for adding additional decision support capabilities, with

minimal impact on the already implemented and demonstrated system.

 Elisa Shahbazian, Louise Baril and Jean-Rémi Duquet 13

Next these components are analyzed, optimized and evaluated in terms of their

performance, given the characteristics and amount of input sensor data and

information. Initially, this is done using simulated data, and the optimization is

iterated until the performance of the overall MSDF system is able to process peak

loads of data with higher operational performance than the current CPF.

In the third phase, recorded data at sea will be used to validate and further optimize

the MSDF system. It is clear that the behaviour of some of the algorithms will be

different with this data, and this will be the most challenging aspect of this phase. At

the end of this phase the MSDF system will be ready for integration on CPF. It will

not only be able to process all data available on CPF, producing high quality

kinematic and identification estimates, but will also be open for future evolution to

more sophisticated sensor data processing, fusion of additional sources of data, higher

level fusion processing, etc.

At the current time, the first two phases of this effort are close to completion. This

paper includes the details, lessons learned and results of the first two phases, and

describes the specific research activities envisaged in the third phase. It also

describes some earlier and parallel proof-of-concept efforts towards demonstrating

the future growth of this system.

2. KBS Architecture Based MSDF Design

The details of the MSDF prototype,
1,2

 as well as the KBS architecture, have been

published earlier.
3,4,5,6

The KBS architecture developed at LM Canada was designed right from the start as

an architecture that could support a large real-time application through all phases of

its development life-cycle, from early analysis and prototyping phases to the final

deployment. As such, it had to incorporate several key features to give maximum

flexibility to the developers without adversely impacting performance. As a

minimum, the KBS shell must provide the following:

a. Speed: The key advantage of this system is pure execution speed, as a result

of its implementation as a compiled system (C++) rather than an interpreted

one, and because of its optimized blackboard controller.

b. Small Overhead: Because of its streamlined design, the KBS scheduling and

activation mechanisms introduce very little overhead in the system. The

difference between “Total Agent CPU” and the “user CPU” has been shown

to be less than 5 %.

14 Optimization of the Multi-Source Data Fusion System

c. Linearity: The blackboard controller design incorporates a critical

mechanism, similar to the so-called RETE algorithm, which directly links

each agent to its associated data types, thereby avoiding costly loops each

time an agent-data pair needs to be activated. This mechanism, coupled with

a design which avoids lists searches in the internal controller, ensures from a

theoretical point of view that the processing time of a given system of agents

will scale linearly with the number of rules and data instances present in the

system, thereby allowing system scaleability (provided of course that the

agents themselves are linear). This linearity has been demonstrated with run-

time benchmarking of Level 2, 3 data fusion algorithms in a previous study
6

(similar to MSDF in terms of software complexity and CPU needs) with up

to 1000 tracks.

These features illustrate that the KBS-based implementation will not handicap the

run-time performance of the MSDF system.

Other major benefits of this architecture include modularity and the possibility of

modifying each component independently, without affecting the rest of the system, as

well as the ability for integrating algorithmic and rule-based decision support within

the same infrastructure

Although Level 1 data fusion does not require rule-based reasoning, it is clear that the

architecture is ideal for future growth into higher level fusion implementations.

Therefore the first step towards optimization of the MSDF prototype was to

decompose it into agents. Figure 1 shows a high level diagram of how MSDF was

decomposed into agents within the KBS architecture. It illustrates the fact that the

MSDF system can be viewed as a small number of independent domains, consisting

of a number of sequential steps:

a. Data reception, preparation and buffering

b. Data processing (i.e., the fusion processes)

c. Track management

d. Data output mechanism (not represented in Figure 1).

The end result of this first step was a new prototype, Data Fusion on Blackboard

(DFBB).

 Elisa Shahbazian, Louise Baril and Jean-Rémi Duquet 15

The designer can use three potential options to make optimal use of the processor

(and other system’s resources) to obtain a faster execution, and ultimately guarantee

real-time performance of the system within this infrastructure.

 The first is intrinsic to the KBS and involves the regular blackboard scheduler

together with the fine granularity of each individual agent; the second deals with

agents multithreading, which is very robust and user-friendly on the KBS; and the

third uses the real-time features of the operating system, which are still available to

the developer through the KBS layer. Because of the nature of Data Fusion

algorithms, and also because the timing constraints are not too stringent, our efforts

will focus on the first method, namely run-time optimization of individual agents.

CONTACT

_XXX

DUMMY*

RAW

_CONTACT

ASSIGNMENT

Attribute

Gating*

NN /

JVC

NULL

Principal

CONTACT

CONTACT

_TRACK

_PAIR

TIME_UPD

_XXX

Time

UpdateXXX*

NULLPROPOSITION
CREATE_

XXX_TRACK
POS_UPD_

XXX_XXX

ASSIGN_

XXX_XXX

GateXXX*
CreateXXX

Track*

PosUpdate

XXX*

Identity

Update*
DeletePair*

TRACK_

STATE
TRACK

Fuse

Proposition*

Generate

Track*

Track

GenID

GENERIC

_PROP

_POOL

MakeGen

Pool

AddNAV*

NAV_DATA

AlignXXX*

Socket

Contact*

Kill

AssessmentP

PRIORI-

TIZATION_

BUFFER

AddContact

Buffer*

CONTACT

_BUFFER
NULL

AddContact*
Delete

Contact*

CreatePairs

Figure 1: High-Level Data Flow Diagram of Agents Present in the MSDF System.

Circles represent data types present on the KBS, while squares represent the

agents that act on the data. Symbols XXX are used when agents/data types

are present under several flavors depending on the context of operation (e.g.

sensor name, track and contact types, etc.)

16 Optimization of the Multi-Source Data Fusion System

3. Initial Optimization Efforts

The first necessary condition that has to be met by any real-time application is run-

time efficiency, that is, it has to ensure at least average real-time performance. This

step involves the optimization of the DFBB to support real-time processing of all data

available on a platform, specifically the CPF.

The four domains of MSDF are more or less independent and could in principle be

suitable for process prioritization schemes and real-time scheduling. However, initial

review of the DFBB code shows that three domains out of four are low consumers of

CPU resources, and the remaining one (Data Processing) consists of a relatively small

number of sequential steps which would benefit very little from a sophisticated

scheduling mechanism. Moreover, CPF real-time constraints on input data (typically

several tenths of a second) do not justify the use of hard real-time features (or even a

strict real-time operating system). For these reasons, before real-time scheduling and

prioritization issues are even considered, code optimization must be pushed to the

limit to increase run-time performance as much as possible.

The code optimization is done by iteratively profiling the software, evaluating the

bottlenecks and re-designing/re-coding to remove/reduce CPU utilization by such

components, taking advantage of the various intrinsic facilities of the KBS

architecture and other methods.

3.1. DFBB Benchmarking

The initial DFBB system processed a 100 seconds scenario in about 100 seconds (i.e.,

average real-time) for 100 targets, while the 200-targets scenario requires about 3.5

times the amount of CPU to process a scenario of the same duration.

This is not surprising, since a few agents are clearly expected to behave in a non-

linear way. In fact, all the agents participating in updating tracks, the application of

the Kalman filter and the identity update are expected to show a linear behaviour (i.e.,

linear against the number of tracks), while those performing the gating are expected

to behave roughly as "Ntr2", since the gating process involves "Ntr" x "Nir" pairs

(where "Nir" is the average number of input reports in a data set which is

proportional to "Ntr").

Those expectations are confirmed by a closer inspection at code profiling results for

the individual agents. Several tools are available for this task, depending on the level

of investigation taking place. Standard profiling tools are available on Unix, such as

gprof, giving various degrees of details about the internal calls performed in each

agent, with various timing accuracies as well. For the time being, a minimally

intrusive way of probing the cumulative CPU used by each agent is of interest. For

 Elisa Shahbazian, Louise Baril and Jean-Rémi Duquet 17

this investigation, a timing tool is available on the KBS to monitor the user process

time spent between the start and the end of each agent with minimal overhead, using

C “Times” functions. The nominal precision on each agent execution (time / call) is 1

millisecond.

Results are presented in Table 1 for most agents involved in the fusion process in

DFBB.

Table 1. DFBB Benchmark Results on a 450MHz Pentium Processor running

under Solaris 2.6. A very large fraction of the CPU is used by only 6 agents

(highlighted).

Scenario : 50 Targets 100 Targets

200 Targets

Agent Name : num. of

calls

Total

Time

(secs)

num.

of

calls

Total

Time

(secs)

num.

of

calls

Total

Time

(secs)

AddContact 14171 0.070 26808 0.230 51214 0.260

AlignIFFContact 4389 0.170 8454 0.480 16307 0.900

AlignSG150Contact 4663 0.240 8760 0.600 16629 0.980

AlignSPS49Contact 5119 0.210 9594 0.550 18278 0.990

AttributeGating 7120 0.760 8831 2.190 9358 7.760

CreatePairs 7142 1.510 8854 3.620 9370 10.310

CreateRBTrack 59 0.010 117 0.010 248 0.010

DeleteContact 14171 0.100 26808 0.300 51214 0.700

DeletePair 55984 0.660 153937 1.640 550216 6.640

ExtAdap KalmanRB_RB 14112 2.170 26691 4.050 50966 7.490

FuseProposition 2534 0.110 4870 0.180 9472 0.410

GateRB_RB 41813 3.700 127129 11.690 499002 46.870

GenerateTrack 14171 0.230 26808 0.490 51214 0.770

IdentityUpdate 14112 0.320 26691 0.600 50966 1.370

NearestNeighbour 7120 0.520 8831 0.720 9358 1.270

Principal 1 0.130 1 0.140 1 0.140

SocketContact 7143 0.580 8855 0.930 9371 1.620

TimeUpdateRBTrack 55925 5.290 153820 14.630 549968 54.720

TrackGenID 1615 0.620 2516 0.910 3174 1.310

CPU agent total time 17.42 43.98 144.52

User CPU time (sec):

System CPU time (sec):

Execution Time (min):

Overall CPU use (%):

 18.67

1.27

0:20.40

97.7 %

 46.07

2.89

0:49.36

99.1 %

 152.46

6.00

2:38.85

99.7 %

18 Optimization of the Multi-Source Data Fusion System

The following observations follow directly from the data displayed in Table 1:

a. A very large fraction of the CPU time (above 90% for 200 tracks) is spent in six

agents. These agents are all on the critical path and cannot be pushed aside or

executed out of sequence by some process scheduling scheme. In order to reduce

average run-time comfortably below the 100-second duration of the scenario, the

first step is clearly to optimize those agents to increase execution speed and, if

possible, linearize them with respect to the number of tracks “Ntr” to reduce their

impact on the worst-case scenario and improve scaleability (for Ntr > 200).

b. The most time-consuming agents, as identified in Table 1, are all (except one)

agents that show a non-linear execution time against the number of tracks

processed by the system. The non-linear agents are: TimeUpdateRBTrack,

GateRB_RB, CreatePairs, DeletePair, AttributeGating; Among those, we can

identify two categories:

1) The number of calls to the agent is roughly constant, but the agent internal

algorithms involve input data of the type "Ntr" x "Nir" (e.g., track-input

report pairs), and requires a processing time roughly proportional to “Ntr2 ”.

The agents falling in this category are “AttributeGating” and “CreatePairs”.

2) The agent execution time is roughly constant, but the number of calls to the

agent increases like “Ntr2”. This category includes DeletePair, GateRB_RB

and TimeUpdateRBTrack.

From the preliminary analysis and observations above, taking each agent

independently, the following optimization strategy to reach average real-time

performance was selected:

a. TimeUpdateRBTrack: This agent is the most demanding in the whole system,

thanks to both internal processing needs and a large number of calls. It is used

both for the gating process and the positional track update process (as part of

the Kalman filter process); these processes can be analyzed separately:

1) Track update: At the end of the fusion process, each contact is used to

update the state vector of one of the tracks in the system. The track is

time-updated in the process, resulting in ~50 000 calls to

TimeUpdateRBTrack for the 200 seconds scenario. The number of

calls is linear with Ntr and does not cause abusive overhead in this

process.

2) Position update: before the gating process, the MSDF algorithm selects

a sample of tracks, and propagates their state vector to the time of each

contact received to form a contact-track pair. This translates into a

 Elisa Shahbazian, Louise Baril and Jean-Rémi Duquet 19

number of calls of order “Ntr
2
”, for a total of ~480 000 agent calls to

TimeUpdateRBTrack during the 200 second scenario. This latter

number could be reduced by a factor of ~6 if the tracks were time

updated to an average time instead of the individual times of the input

reports, thereby making the number of calls to the agent linear with

“Ntr”

3) Once this agent has been linearized, another quantum leap in speed will

be gained by the use of XY coordinates for tracking, instead of the

current RB coordinates. The current agent TimeUpdateRBTrack

spends significant processing time converting the RB track state to an

intermediate XY state vector, and back to RB.

b. GateXY_XY will replace the current RB_RB version. This by itself will do

little to improve run-time performance since the gating agents do not require

RB to XY conversions. However, in the current implementation, all gating

agents compute their statistical distance via a call to a single, generic method

that performs several complex matrix operations (i.e., matrix reduction,

transposition, multiplication and inversion). This improves code readability

but only at the expense of significant CPU overhead. It is hard to predict the

cumulative gain expected by all these optimizations; a factor of 2 is certainly

an underestimation and a factor or 5 is not out of reach.

c. ExtAdapKalmanRB_RB is a linear agent, but suffers both from time-

consuming RB to XY conversions and from extensive use of matrix

operations used to calculate the Kalman gain and the resulting track state

update. This agent is already linear in “Ntr” and should drop by a (very

conservative) factor of 2 at least in the final implementation.

d. A significant speed increase can be achieved just by implementing a better

object creation strategy in the MSDF system. Most of the dynamic memory

allocation can be replaced by the use of persistent objects created upon

system initialization, for instance by replacing contact-track pair objects by a

single, persistent pair list. An immediate effect would be the disappearance

of the agents DeletePair and DeleteContact, two of the major - non-linear -

CPU contributors identified above. This would result in an immediate gain

of about 40 seconds out of 320, for the 200-targets scenario. Similar object

creation is also hidden inside other agents (e.g., ExtAdapKalmanRB_RB,

which instantiates a new TrackState object for each track update) and can be

improved, with significant gains in terms of run-time performance.

The sole implementation of about half of the strategies stated above decreased

significantly the CPU time needed by those processes, prior to performing any deeper

20 Optimization of the Multi-Source Data Fusion System

investigation to streamline and optimize the individual agents (e.g. through internal

code profiling). After a change of coordinate system, and with most generic matrix

operations expanded, one gets the figures presented in Table 2, where the results of

benchmarking before and after optimization are shown side-by-side for 200-targets

scenario.

Even though object creation/deletion strategies and agents linearization still remain to

be applied, overall CPU needs of DFBB agents has already been divided by three,

allowing the system to achieve average real-time performance on the presented

scenario. Further optimization is expected to bring the current figure down by another

factor of two.

4. Supporting R&D and Future Plans

In parallel with this real-time performance optimization efforts, there are a number of

projects at LM Canada which look at the optimization of algorithm performance,

development of alternate algorithms which have higher performance, development of

Table 2. Comparison of DFBB before and after the first round of optimisation for

a 100-seconds, 200-targets scenario on a 450MHz Pentium Processor,

showing the main CPU-demanding agents.

Scenario : Before

Optimisation

(R-B Tracking)

After

Optimisation

(X-Y Tracking)

Agent Name :

num. of

calls

Total

Time

(secs)

num. of

calls

Total

Time

(secs)

ExtAdapKalman 50743 8.100 50764 7.510

TimeUpdate Track 891431 102.140 895377 17.000

Gate 840688 101.040 844613 12.400

CreatePairs 9326 22.350 9326 21.950

DeletePair 891681 10.110 895606 9.940

AttributeGating 9315 12.770 9315 2.510

total main 6 agents 256.51 71.31

% of total agent CPU 95 % 85 %

total all other agents 15.04 14.01

Total Agents CPU 271.55 85.32

 Elisa Shahbazian, Louise Baril and Jean-Rémi Duquet 21

strategies for fusion management (level 4 fusion) to activate different algorithms

depending to different context, etc.

The KBS architecture is ideally suited for supporting all of these concurrent

activities, permitting iterations of algorithmic and real-time optimization indefinitely,

until the desired performance is achieved of each individual platform.

The next step for the CPF is to use recorded data at sea and use it to validate and

further optimize the MSDF system. It is clear that the behaviour of some of the

algorithms will be different with this data, and this will be the most challenging

aspect of this phase. In this phase too, the algorithmic developments of the parallel

research efforts will be very useful, as a variety of algorithms to perform each MSDF

task will be available for experimentation. At the end of this phase the MSDF system

will be ready for integration on CPF.

Acknowledgements

The authors would like to thank the DREV DFRM research team and the rest of LM

Canada’s R&D team, all of whom had significant contributions into decision support

technologies research and demonstrations for Canada’s defence platforms since 1990,

and specifically the application of these technologies to CPF.

References:

1. Bégin F., E. Boily, T. Mignacca, E. Shahbazian and P. Valin, “Architecture and

Implementation of a Multi-Sensor Data Fusion Demonstration Model within the Real-

time Combat System of the Canadian Patrol Frigate,” AGARD symposium on Guidance

and Control for Future Air-Defence Systems AGARD-CP-555 (Copenhagen, 17-20 May

1994), 28.1-28.8.

2. Valin P., J. Couture, and M.-A. Simard, “Position and Attribute Fusion of Radar, ESM,

IFF and Data Link for AAW missions of the Canadian Patrol Frigate,” in Multisensor

Fusion and Integration for Intelligent Systems (MFI'96) (Washington, D.C. December 8-

11 1996), 63-71.

3. Macieszczak, M., P.Bergeron, M. Mayrand, J. Couture, and J.R. Duquet, “Fast

Multithreaded Agent-Blackboard Expert System: A Solution for a Next Generation

Command and Control System,” in 1998 Systems Engineering and Software Symposium

(New Orleans: May 13-15, 1998).

4. Shahbazian E., J.-R. Duquet, M.-A. Simard, “Literature Survey on Computer based

Decision Support for Command and Control Systems,” in FUSION 99 (Sunnyvale, CA,

6-8 July 1999), vol. 2, pp. 926-933

22 Optimization of the Multi-Source Data Fusion System

5. Bergeron P., J. Couture, J.-R. Duquet, M. Macieszczak, and M. Mayrand, “A New

Knowledge-Based System for the Study of Situation and Threat Assessment in the

Context of Naval Warfare,” FUSION ‘98 (Las Vegas, July 6-9, 1998).

6. Duquet J.-R., P. Bergeron, D.E. Blodgett, J. Couture, M. Macieszczak, and M. Mayrand,

“Analysis of the functional and real-time requirements of a Multi-Sensor Data Fusion

(MSDF) / Situation and Threat Assessment (STA) / Resource Management (RM)

system,” in Sensor Fusion: Architectures, Algorithms, and Applications II, SPIE

Aerosense‘98 (Orlando, 13-17 April 1998), 198-209.

ELISA SHAHBAZIAN received her PhD degree in High Energy Physics from McGill

University in 1983. In 1991 she became responsible for the Data Fusion section of the R&D

Department at LM Canada and since 1994 she is responsible for conception, prioritisation, and

co-ordination of all R&D activities in Canada for development of intelligent decision support

technologies for C4I applications (Data Fusion - levels 1, 2, 3 & 4, Resource Management,

Imaging, etc.), and the engineering infrastructure for the establishments of these technologies

onboard the Naval and Airborne platforms of Canada. Dr. Shahbazian leads the LM Canada’s

R&D department, consisting of 14 PhD Scientists and Engineers, who perform the research in

various decision support technology domains in teams consisting of internal researchers,

graduate students as well as satellite university teams. Address: Lockheed Martin Canada,

6111 Royalmount Ave., Montréal, Québec, H4P 1K6, Canada; tel: (514) 340-8310, extensions

8343, 8537, 8547, fax: (514) 340-8318; E-mail: elisa.shahbazian@lmco.com

LOUISE BARIL is researcher at Lockheed Martin Canada. E-mail: loiuse.baril@lmco.com.

JEAN-RÉMI DUQUET is researcher at Lockheed Martin Canada. E-mail: jean-

remi.duquet@lmco.com.

	1. Introduction
	2. KBS Architecture Based MSDF Design
	3. Initial Optimization Efforts
	3.1. DFBB Benchmarking

	4. Supporting R&D and Future Plans
	Acknowledgements
	References

