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INTRODUCTION TO THE FUSION OF
QUANTITATIVE AND QUALITATIVE BELIEFS

Jean DEZERT and Florentin SMARANDACHE

Abstract: The efficient management and combination of uncertain and conflict-
ing sources of information remain of primal importance for the devekyrof re-
liable information fusion systems. Advanced fusion systems must ddahtith
quantitative and qualitative aspects of beliefs expressed by the diffevarces

of information (sensors, expert systems, human reports, etc). paipier intro-
duces the theory of plausible and paradoxical reasoning, knownm3 D3ezert-
Smarandache Theory) in literature, developed originally for dealing wighrem
cise, uncertain and potentially highly conflicting sources of informatiorighag
quantitative beliefs on a given set of possible solutions of a given probl&e
also propose in this paper new ideas on a possible extension of DSmTefor th
combination of uncertain and conflicting qualitative information in order t@l de
directly with beliefs expressed with linguistic labels instead of numerical gatue

be closer to the nature of information expressed in natural languagewaitable
directly from human experts.

Keywords: Dezert-Smarandache Theory, DSmT, Information Fusion, Quantita-
tive belief, Qualitative belief, Conflict management.

1 Introduction

The development of DSmT (Dezert-Smarandache Theory) [3@@from the neces-
sity to overcome the inherent limitations of DST (Dempsiaafer Theory) [29] which
are closely related with the acceptance of Shafer's model\{iorking with arhomo-
geneoudrame of discernmen® defined as a finite set afxhaustiveand exclusive
hypothese$;, i = 1,...,n), the third excluded middle principle, and Dempster’s rule
for the combination of independent sources of evidence.ithtinns of DST are well
reported in literature [46, 37, 47] and several alternativles to Dempster’s rule of
combination can be found in [10, 42, 16, 18, 28, 30] and vecgmdy in [31, 32, 13].
DSmT provides a new mathematical framework for the fusioguaintitative or qual-
itative beliefs which appears less restrictive and moreeg@rthan the basis and con-
straints of DST.
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8 Introduction to the Fusion of Quantitative and Qualitative Beliefs

The basis of DSmT is the refutation of the principle of thedhéxcluded middle
and Shafer's model in general, since for a wide class of fupi@blems the hypothe-
ses one has to deal with can have different intrinsic natamdsalso appear only vague
and imprecise in such a way that precise refinement is jusbssiple to obtain in re-
ality so that the exclusive elemerttscannot be properly identified and defined. Many
problems involving fuzzy/vague continuous and relativeaapts described in natural
language with different semantic contents and having nolatesinterpretation enter
in this category. Although DSmT was initially developed foe fusion of quantitative
beliefs (i.e. numbers/masses|in 1] satisfying a given set of constraints - see later),
we will show in section 3 how it can be extended quite direfdhthe fusion of quali-
tative beliefs (i.e. when precise numbers are replaced pydaise linguistic labels).

DSmT starts with the notion dfee DSm modednd consider®) only as a frame of
exhaustive elements which can potentially overlap and diferent intrinsic natures
and which also can change with time with new information aridences received on
the model itself. DSMT offers a flexibility on the structurktibe model one has to
deal with. When the free DSm model holds, the conjunctive ensss is used. If the
free model does not fit the reality because it is known thatessobsets 0® contain
elements truly exclusive but also possibly truly non erigtat all at a given time (in
dynamic fusion), new fusion rules must be used to take into accowgetlintegrity
constraints. The constraints can be explicitly introduicéal the free DSm model to fit
it adequately with our current knowledge of the reality; veeually construct daybrid
DSm modebn which the combination will be efficiently performed. Séréd model
corresponds actually to a very specific hybrid DSm (and hanegus) model includ-
ing all possible exclusivity constraints. DSmT has beeretiged to work with any
model and to combine imprecise, uncertain and potentiédly bonflicting sources for
static and dynamic information fusion. DSmT refutes theaitleat sources provide
their (quantitative or qualitative) beliefs with the sanisalute interpretation of ele-
ments of®; what is considered as good for somebody can be considereddafor
somebody else. This paper is a revised and extended veidiéon/o 34, 8].

After a short presentation of hyper-power set and DSm maddelss section, we
will present in section 2 the main combination rules for theidn of quantitative pre-
cise or imprecise beliefs, i.e. the Classic (DSmC), the Hiyp'Sm (DSmH) and the
proportional conflict redistribution (PCR) rules of comdiion. Section 3 extends the
quantitative fusion rules of section 2 to their qualitatb@interparts. Such extension
allows to deal directly with beliefs expressed with lindig$abels extracted from nat-
ural language.

li.e. when the fram® and/or the modeM is changing with time.
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1.1 Notion of hyper-power set

Let® = {6,,...,0,} be afinite set (called frame) afexhaustive elemerftsThe free
Dedekind’s lattice denotelalyper-power seD® [30] is defined as

1. 0,6,...,0, € D°.

2. If A,B € D®, thenAn B andA U B belong toD®.

3. No other elements belong 10°, except those obtained by using rules 1 or 2.
If |©] = n, then|D®| < 22", The generation ab® is presented in [30]. Since for any
given finite se®, |[D®| > 29|, we call D® thehyper-power sevf ©. |D®| forn > 1

follows the sequence of Dedekind’s numbers:1,2,5,19,168n analytical expression
of Dedekind’s numbers obtained by Tombak and al. can be faufg0].

Example If © = {6,,6,603}, then its hyper-power séb® includes the following
nineteen element@:, 01N06s 003, 01N06, 01 093, 92(]93, (91 U02)ﬂ93, (91 U@g)ﬂ@Q,
(92 U93) Nnéo, (6‘1 ﬂez) U (91 093) U (92 093), 01,05, 05, (91 ﬁ92) Ubs, (91 ﬂ93) Ubs,
(92 N 93) U8y, 6; UBby, 61 U B3, 05 U6 andf; U by U O5.

1.2 Free and hybrid DSm models

O = {604,...,0,} denotes the finite set of hypotheses characterizing therfysiob-
lem. D® constitutes théree DSm modeM/ (©) and allows to work with fuzzy con-
cepts which depict a continuous and relative intrinsic reatsuch kinds of concepts
cannot be precisely refined with an absolute interpretdiemause of the unapproach-
able universal truth. When &, are truly exclusive discrete elemenf3? reduces to
the classical power séf. This is what we call the Shafer’s model, denotet! (©).
Between the free DSm model and the Shafer’'s model, theresexigide class of fusion
problems represented in term of DSm hybrid models wieir/olves both fuzzy con-
tinuous concepts and discrete hypotheses. In such clasg, exclusivity constraints
and possibly some non-existential constraints (espgaidiien working on dynamic
fusion) have to be taken into account. Each hybrid fusioblgra is then characterized
by a proper hybrid DSm mode¥1(0) with M(0) # M/ (0) andM(0) # M°(O).
The main differences between DST and DSmT are (1) the modehich one works
with, and (2) the choice of the combination rule. We use hieeegeneric notatiol
for denoting eitheD® (when working in DSmT) o2® (when working in DST). We
denoteG* the setG from which the empty set is excludéd™ = G \ {0)}).

2We do not assume here that elemefithave the same intrinsic nature and are necessary exclusive.
There is no restriction 0f; but the exhaustivity which is not a strong constraint sineecan always
introduce if necessary a closure element representing aflimyisiypotheses, sap, in order to always
work in a closed world.
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e A 3D Example of free DSm modéWhen©®© = {6,,60,,03}, the free-model
M/ (©) corresponds to the following Venn diagram where all elemeah over-
lap partially but with vague boundaries in such a way that xac#precise re-
finement is possible.

0, 02

03

Figure 1: Venn Diagram for the free DSm modet/ (©)

e A 3D Example of a hybrid DSm modadlet's consider® = {6,,6-,65} and
only the exclusivity constraint df; with respect t@;, andd,, then one gets (see
figure 2) the following Venn diagram for this specific hybri®&mh modelM ()
defined byo and the chosen (integrity) constraint.

01 92

03

Figure 2: Venn Diagram for a hybrid DSm modet ()

e A 3D Example of Shafer's modelet's consider© = {6;,6,,03}. Shafer’s
model, denoted\1°(©) assumes all elements 6f being truly exhaustive and
exclusive. Its corresponding Venn diagram correspondsltoing figure.
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01 02

03

Figure 3: Venn Diagram for Shafer's mod&{°(©)

2 Fusion of quantitative beliefs

2.1 Quantitative belief functions

In DSmT framework, a (precise) quantitative basic belisfgmment (bba) associated
with a given source of information (body of evidence) abofraane© is defined as a
precise mapping:(.) from G into [0, 1], i.e.m(.) : G — [0, 1] satisfying:

m@ =0 —and > m(d)=1 (1)
AeG
Fromm(.), we define the (quantitative) credibility and plausibifinctions as:
Bel(4) £ > m(B) and Pl4)£ Y m(B) 2
BCA BNA#(
Bed BeG

These definitions remain compatible with the definitions ef(B and P[.) given in
DST whenM®(0) holds [29] since in that casé = D® reduces to classical power-
set2©.

2.2 Combinations of precise quantitative beliefs

We present here the three main DSm fusion rules proposed mTD&mework for

the combination of precise quantitative beliefs. The masipke rule is the Classic
DSm rule (DSmC) which corresponds to the consensus opevatbyper-power set
when the free DSm model holds. The second and more sophéstioae is the DSm
hybrid rule (DSmH) [30] which allows to work on any static gmémic hybrid model

and also to work on the Shafer's model whenever this modelhdDSmH) is a direct
extension of Dubois & Prade’s rule [10] for dealing with thendmic/temporal fusion
(i.e. when the frame and its model/constraints change witk)t Then we present

3also called belief mass in the literature.
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the proportional conflict redistribution rule #5 (PCR5) alniproposes a more subtle
transfer of the conflicting masses than (DSmH) [32, 31]. (B$mand PCR rules are
mathematically well defined and work both with any modelswhdtever the value the
degree of conflict can take. In practice, when reliabilibésources are known, we can
easily take them into account in all DSm-based fusion rwedigcounting them by the
proper discounting factor and using classical discourdimgroach of beliefs [29, 30].
We will not go deeper in the presentation of well-known distting techniques here
since we consider them less fundamental than the combimaéi just want to em-
phasize here that this preprocessing/discounting stépuah very important from
practical point of view must however never appear as a dubstor as an artificial
engineering tricko circumvent the inherent deficiencies of a chosen comioimatile.
Even if the DSm-based rules work for any degree of conflicivbeh sources, we do
not claim that they should be applied blindly in practice whenflict becomes very
large, without trying first to analyze the origins of the partonflicts, estimate and
take into account (when it is possible) the reliability o€kaource before their combi-
nation. But once all these necessary preliminary worksgdealysis of the problems,
the refinement of the model, and reliability assessmentaf saurce) have been done,
one has always to choose what we consider the most legiticoatdination rule we
will apply. DSm-based rule provide possible new solutiond aerious alternatives
for the combination of uncertain, imprecise and confliciimgrmation. Comparisons
of the different main quantitative rules of combinationtwiteveral examples can be
found in [30, 32, 31, 8, 13].

Classic DSm fusion rule (DSmC)

When the free DSm modgl/ (©) holds, the conjunctive consensus, called DSm clas-
sic rule (DSmC), is performed aR®. DSMC of two independehsources associated
with gbbam, (.) andmy(.) is thus givervC € D® by [30]:

Mmpsmc(C) =Y mi(A)my(B) 3

A,BeD®
ANB=C

D® being closed under andn operators, DSmC guarantees that.) is a proper
gbba. DSmC is commutative and associative and can be us#tefusion of sources
involving fuzzy concepts whenevevt/ (©) holds. It can be easily extended for the
fusion ofk > 2 independent sources [30].

4While independence is a difficult concept to define in all tieomanaging epistemic uncertainty, we
consider that two sources of evidence are independentdjsénct and noninteracting) if each leaves one
totally ignorant about the particular value the other vake.
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Example for (DSMC)

Let's consider a generalization of Zadeh’s example [46 adit] takeO = {61, 63,05},
0 < €1, €2 < 1, be two positive numbers and two experts providing the qtadive and
preCise bbanl(91) =1—¢q, m1(92) =0, m1(03) = €1, m2(91) =0, mg(og) =1—¢€
andm2(93) = €2.

If one adopts the free-DSm model fér (i.e. we accept the non exclusivity of
hypotheses), using (DSmC) one gets zero for all masséx®oéxcept the following
ones:

mDSmC(efi) = €1€2
mpsmc(01 Nbe) = (1 —e1)(1 - €2)
mpsmc (01 N03) = (1 —e€1)ea

Mmpsmc(02N03) = (1 —e2)eq

Hybrid DSm fusion rule (DSmH)

WhenM/(©) does not hold (some integrity constraints exist), one dedlsa proper
DSm hybrid modelM (6) # M7 (©). DSm hybrid rule (DSmH) fok > 2 indepen-
dent sources is thus defined for dlle D® as [30]:

mpsmir(A) £ 6(A) - [S1(4) + S3(4) + Ss(4)] (4)

whereg(A) is thecharacteristic non-emptiness functioha set4, i.e. ¢(A) = 1 if
A ¢ ®andp(A) = 0 otherwise, wher@ = {@ 4, 0}. O is the set of all elements of
D® which have been forced to be empty through the constrairiteeahodelM and()

is the classical/universal empty sét (A) = m s (9)(A), S2(A), S3(A) are defined
by

S1(4) 2 > [Tm:(x0) ®)

X1,Xo,...,X,eD® =1
(Xlﬂsz...ka):A

k
S2(A) = > [ mi(x0) (6)
X1,X2,...,Xr€0 =1
U=A]V[(UED)N(A=1})]

k
S3(A) £ > [Tmi(x3) )
X1,Xo,...,X,eD® =1
u(e(X1NXa2N...NXg))=A
(X1NX2N...NXy)€D
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with & £ u(X1) U ... Uu(X) whereu(X) is the union of allg; that composeX,
I, 2 6, U...U#, is the total ignorance, and X) is the canonical forfof X, i.e. its
simplest form (for example X = (AN B)N(AUBUC), ¢(X) = AN B). S1(A)

is nothing but the DSMC rule for independent sources based.btf (©); S»(A) is
the mass of all relatively and absolutely empty sets whictnaissferred to the total
or relative ignorances associated with non existentiastramts (if any, like in some
dynamic problems)Ss3(A) transfers the sum of relatively empty sets directly onto the
canonical disjunctive form of non-empty sets. DSmH gelimgalDSmC and allows to
work on Shafer's model. It is definitely not equivalent to Dester’s rule since these
rules are different. DSmH works for any models (free DSm nho8bafer's model
or any hybrid models) when manipulatimgecisebba. A recent report on DSMT
including MatLal§ codes can be found in [14].

Example for (DSmH)

Let's consider the previous example with= {01, 6,,605}, 0 < €1,¢e2 < 1, be two
positive numbers and two experts providing the quantiadivd precise bba, (61) =
1— e, m1(92) =0, m1(93) = €1, m2(91) =0, m2(92) =1—¢€ andmg(é’g) = €9
and now assume that Shafer's model holds, i.e. we assume, titatandfs are truly
exclusive.

e based on (DSmH) fusion rule (4), on gets:
mpsmm(03) = €1€2
mpsmu(6h Ub2) = (1 —€1)(1 - e2)
mpsmu (01 U63) = (1 —e1)ez
mpsmu (02U 03) = (1 —e2)er

All other masses are zero. This result makes sense sincpdnds truly on the
values ofe; ande, contrariwise to Dempster’s rule according next item.

e using Dempster-Shafer’'s (DS) rule of combination [29], gets

(e1€2)
1—61)'0+0'(1—62)+61€2

mps(03) = ( =1

5The canonical form is introduced here explicitly in ordeirtpprove the original formula given in [30]
for preserving the neutral impact of the vacuous belief ma$®) = 1 within complex hybrid models.
Actually all propositions involved in formulas are expre$getheir canonical form, i.e. conjunctive normal
form, also known as conjunction of disjunctions in Booleageata, which is unique.

6MatLab is a trademark of The MathWorks, Inc., U.S.A.
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which is absurd (or at least counter-intuitive). Note thatatever positive val-
ues forey, €5 are, Dempster’s rule giveways the same resulone) which is
abnormal. The only acceptable and correct result obtaigéabimnpster’s rule is
really obtained only in the trivial case when= ¢; = 1, i.e. when both sources
agree irg; with certainty which is obvious.

Whene; = e2 = 1/2, one otains
m1(01):1/2 m1(92):0 m1(93):1/2

mg(ﬁl) =0 m2(02) = 1/2 m2(93) = 1/2

Dempster’s rule still yieldsnps(fs) = 1 while DSmH based on the same Shafer’s
model erIdS nOWnDSmH(Gg) = 1/4, mDSmH<91 U92> = 1/4, mDSmH(Hl U93) =
1/4, mpsmu (02 U 83) = 1/4 which is more acceptable upon authors opinion. A
detailed discussion on this example (and on more exampligis)answers to recent
criticisms published in [15] can be found in [8].

Proportional Conflict Redistribution rule no 5 (PCR5)

Instead of applying a direct transfer of partial conflictacmpartial uncertainties as
with (DSmH), the idea behind the Proportional Conflict R&distion (PCR) rule [31,
32] is to transfer (total or partial) conflicting masses ta+npty sets involved in
the conflicts proportionally with respect to the massegyassl to them by sources as
follows:

1. calculation the conjunctive rule of the belief massesofses;
2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting massto the non-empty sets
involved in the conflicts proportionally with respect to thmasses assigned by
the sources.

The way the conflicting mass is redistributed yields acjusdiveral versions of PCR
rules. These PCR fusion rules work for any degree of confiictany DSm mod-
els (Shafer’'s model, free DSm model or any hybrid DSm moded) both in DST
and DSmT frameworks for static or dynamical fusion situagioWe present here the
most achieved proportional conflict redistribution rulelérno 5) denoted (PCR5) in
[31, 32]. PCRS5 is what we think the most efficient PCR fusidle for the combina-
tion of two sources. A more intuitive version of PCR5 for-= 3 sources and denoted
PCRG6 has been recently proposed by Martin and Osswald in [P@R6) coincides
with (PCR5) for the two-source case, but differs from (PCR&EN combining alto-
gether more than two sources.
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PCRS5 rule redistributes the partial conflicting mass to teenents involved in the
partial conflict, considering the conjunctive normal forfrtiee partial conflict. PCR5
is what we think the most interesting redistribution of cimtithg mass to non-empty
sets following the logic of the conjunctive rule. (PCR5) ga@ebetter redistribution of
the conflicting mass than Dempster’s rule since (PCR5) gaekviards on the tracks
of the conjunctive rule and redistributes the conflictingseanly to the sets involved
in the conflict and proportionally to their masses put in tbeftict. (PCR5) rule is
guasi-associative and preserves the neutral impact ofabaous belief assignment
because in any partial conflict, as well in the total conflidhich is a sum of all partial
conflicts), the conjunctive normal form of each partial cmhfloes not includ® since
O is a neutral element for intersection (conflict), thereférgets no mass after the
redistribution of the conflicting mass. We have proved in] B continuity property
of the (PCRb) result with continuous variations of bba to bora. The general (PCR5)
formula fors > 2 sources is given by [3kh pcrs(0) = 0 andvX € G\ {0}

mpors(X) = miz. (X) + Z Z
L, o

_ oy {d2sdi €PN, ))
1§7”1<7"2<--.<Tt—1<(7"t—5) C(XﬂXj2ﬂ...ﬂst):@

{it,evis JEP* ({1,.0,8))
(Hﬁ:l My (X)?) - [H;:Q(H;izn,l—i—l My, (X;,)]
(ITi =1 i, (X)) + 1o ([T =,y 1 i, (X5)]

whereG corresponds to classical power-8€t if Shafer's model is used af corre-

sponds to a constrained hyper-power Bét if any other hybrid DSm model is used
insteady, j, k, r, s andt in (8) are integers.

(8)

mip J(X)=ma(X)= > [[mi(x)
X1,..,Xs€G i=1
X1N..NX=X

corresponds to the conjunctive consensusXobetweens sources and where all de-
nominators are different from zero. If a denominator is z#rat fraction is discarded,;
the set of all subsets df elements from{1,2,...,n} (permutations ofr elements
taken byk) was denote®”({1,2,...,n}), the order of elements doesn’'t couatX)

is the canonical form (conjunctive normal form) &f.

Whens = 2 (fusion of only two sources), the previous (PCR5) formulduees to
its simple following fusion formulam pcgs(0) = 0 andvX € G\ {0}

—m mi(X)*mo(Y)  ma(X)*m(Y)
mpcrs(X) = mi2(X) + Yeg\:{x}[ml(X) +ma(Y)  ma(X) +my (Y)] ©
c(XNY)=0
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For® = {6,60,,...,0,} with Shafer's model and = 2 Bayesian equi-reliable
sources, i.e. when quantitative bbg (.) andma(.) reduce to subjective probability
measured; (.) and P»(.), it can be shown [31] after elementary algebraic derivation
that previous (PCR5) formula reduces to the following sirfpfmula, P5¢ 7% () = 0
andve, € ©,

S M ~ _P0)P(0;)
P1PQCR5(92') - Pl(gz) = Pl(el) + P2( ]; P2(01 + Pl 9])

_ Ly _Pa(0) Poza(0))

_ S:LQPS(GZ)[;::1 o6 + Poos(f)! (10)

It can be checked moreover thBf,7*(.) defines a subjective-combined proba-
bility measure satisfying all axioms of classmal Probi&piTheory.

Examples for (PCR5)

e Example 1 Let's take® = { A, B} of exclusive elements (Shafer's model), and
the following bba:

A B AUB
mi() | 06 0 04
ma() | 0 03 07

[mn() [ 042 012 0.28]

The conflicting mass is12 = mn (AN B) = m1(A)me(B) +m1(B)ma(A) =
0.18. ThereforeA and B are the only focdl elements involved in the conflict.
Hence according to the (PCR5) hypothesis aAlgnd B deserve a part of the
conflicting mass and U B does not deserve. With (PCR5), one redistributes the
conflicting massk;2 = 0.18 to A and B proportionally with the masses; (A)
andmy(B) assigned tod and B respectively. Let: be the conflicting mass to
be redistributed ta!, andy the conflicting mass redistributed 8, then

x y x+y 018
06 03 06+03 09

hencer = 0.6-0.2 = 0.12,y = 0.3-0.2 = 0.06. Thus, the final result using the
(PCR5) rule is

=0.2

mpors(A) =042+ 0.12 = 0.54
mPCR5(B) =0.12+0.06 = 0.18
’ITLPCR5(AUB) =0.28

"a focal element is an element carrying strictly positive ieliass.
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For comparison, here are the results obtained from Denpaié (DS), (DSmH)
and (PCR5):

A B AUB

mps 0.512 0.146 0.342
mpsmu || 0.420 0.120 0.460
MpCR5 0.540 0.180 0.280

Example 2 Let’'s modify example 1 and consider

A B AUB
mi() | 06 0 04
ms() | 02 03 05

[mn() [ 050 012 0.20

The conflicting masé;> = mn(A N B) as well as the distribution coefficients
for the (PCR5) remains the same as in the previous examplaleugets now

A B AUB

mps 0.609 0.146 0.231
mpsmp || 0.500 0.120 0.380
mpcrs || 0.620 0.180 0.200

Example 3 Let’'s modify example 2 and consider

A B AUB
mi() | 0.6 03 01
ma() | 02 03 05

[ mn(.) [ 0.44 0.27 0.05 ]

The conflicting mass2 = 0.24 = my(A)ma2(B) + m1(B)ma(A) = 0.24
is now different from previous examples, which means thatA) = 0.2 and
m1(B) = 0.3 did make an impact on the conflict. Therefoteand B are the
only focal elements involved in the conflict and thus orlyand B deserve a
part of the conflicting mass. (PCRS5) redistributes the phdbnflicting mass
0.18 toA and B proportionally with the masses; (A) andmsy(B) and also the
partial conflicting mass 0.06 td and B proportionally with the masses,(A)
andm; (B). After all derivations (see [13] for details), one finallytge

A B AUB

mps 0.579 0.355 0.066
mpsmu || 0.440 0.270 0.290
MpCR5 0.584 0.366 0.050
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One clearly sees thatps(A U B) gets some mass from the conflicting mass
althoughA U B does not deserve any part of the conflicting mass (according t
(PCR5) hypothesis) sincéU B is not involved in the conflict (onlyl and B are
involved in the conflicting mass). Dempster’s rule appeansstless exact than
(PCR5) and Inagaki’s rules [16]. It can be showed [13] thagbki’s fusion rule
[16] (with an optimal choice of tuning parameters) can beedmsome cases
very close to (PCR5) but upon our opinion (PCR5) result iserexact (at least
less ad-hoc than Inagaki’s one ).

e Example 4 Zadeh's example [46, 47]

Let's conside®® = {M, C, T} as the frame of three potential origins about pos-
sible diseases of a patient/( standing formeningitis C' for concussiorandT

for tumor), the Shafer's model and the two following belief assigntagiro-
vided by two independent doctors after examination of timeespatient.

The total conflicting mass is high since it is

— with Dempster’s rule and Shafer's model (DS), one gets thet-intuitive
result (see justifications in [46, 10, 42, 37, 30] and cmticiagainst them
in [15]): mps(T) =1

— with Yager's rulé [42] and Shafer’s modekny (M UC UT) = 0.99 and
my (T) =0.01

— with (DSmH) and Shafer's model:
mDSmH(M U C) =0.81 mDSmH(T) =0.01

mpsma(M UT) =mpsme(CUT) = 0.09

— The Dubois & Prade’s rule (DP) [10] based on Shafer's modaViges in
Zadeh's example the same result as (DSmH), because (DPD&1dH)
coincide in all static fusion problers

— with (PCR5) and Shafer's model:

mpCR5(M) = mPCR5(C) = 0.486 mpCR5<T) = 0.028

8Ronald Yager suggested in his rule to transfer the total iminfj mass to the total ignorance instead
using normalization as with Dempster’s rule.

SIndeed (DP) rule has been developed for static fusion onjeWBSmH) has been developed to take
into account the possible dynamicity of the frame itself arso @k associated model.
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One sees that when the total conflict between sources bedaugtesDSmT is
able (upon authors opinion) to manage more adequatelyghreither (DSmH)
or (PCR5) rules the combination of information than Dempstaile, even
when working with Shafer's model - which is only a specific higlomodel.

(DSmMH) rule is in agreement with (DP) rule for the static €usibut (DSmH)
and (DP) rules differ in general (for non degenerate casgsjyfnamic fusion
while (PCR5) rule seems more exact because of the propeompiamal con-

flict redistribution of partial conflicts only to elementsvatved in the partial
conflicts. Besides this particular example, we showed in §3Q that there ex-
ist several infinite classes of counter-examples to Demipstde which can be
solved by DSmT.

2.3 Combination of imprecise quantitative beliefs

When sources are unable to provide precise quantitative bakéfs assignments (bba)
m(.), they can in some cases at least express their quantitatiiet Assignment on a
frame © in an imprecise manner amissible imprecisguantitative basic beliefs
assignmentsn! (.) whose values are real subunitary intervalgfi], or even more
general as real subunitary sets (i.e. sets, not necessdetyals). In the general case,
these sets can be unions of (closed, open, or half-operolosid) intervals and/or
scalars all ino, 1].

Definition of imprecise quantitative basic beliefs assignmnt

An imprecise quantitative bba’(.) is mathematically defined as’(.) : D® —
P([0,1)) \ {0} whereP([0,1]) is the set of all subsets of the interyal 1]. m?(.) over

D® is saidadmissibleif and only if there exists for everx € D at least one real
numberm(X) € m!(X) such thaty_ . ,e m(X) = 1. m!(.) is a normal extension

of m(.) from scalar values to set values. For example, if a sourcgis not sure about

a scalar valuen(A) = 0.3, it may be considered an imprecise source which gives a set
value saym?!(A4) = [0.2,0.4].

Operators on sets

The following simple commutative operators on sets (addi and multiplicatior)
are required [30] for fusion of imprecise bba:

e Addition :

X BX, 2 {z|r=21 420,71 € X),20 € Xo} (11)

e Multiplication :

X1|3X2é{$‘1':$1'$2,1'16)(1,5626)(2} (12)
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These operators are generalized for the summation and gigodin > 2 sets as
follows

Z Xy ={z|z= Z T, € X1,..., 0y € Xp} (13)

]{::17_,,7n k=1,..., n
H Xy ={z|z= H Tp, X1 € X1y, Ty € Xy} (14)
k=1,...,n k=1,....n

From these operators, one easily generalizes (DSmC) anah{)8usion rules from
scalars to sets ([30] chap. 6) to obtain their imprecise taparts. In order to extend
(PCR5) to its imprecise counterpart, i.e. (imp-PCRb5) fusige, for dealing with im-
precise quantitative belief assignments, we need alsdriudince the division operator
on sets as follows:

e Division (for the case whef ¢ A5, inf(Xs) # 0 andsup(Xs) # 0):

X1 DO Xy £ {1‘ | T = 331/$2,Wherexl € Xi,xq € Xg} (15)

Operations with sets are associative and commutativeaistio operations with
numbers. Thus, fot, b, ¢, d, e, f > 0 ande, f > 0, if one compute$(a, b) & (¢, d)) A
(e, f) one gets

((a,0) B (¢, d)) A (e, f) = (ac,bd) 1 (e, f) = (ac/f,bd/e)

and we get the same result if we comp(ieb) = ((c, d) @4 (e, f)) because

(a,0) B ((c,d) @ (e, f)) = (a,b) B (c/f,d/e) = (ac/ [, bd/e)

In our next examples we always prefer to compute the divssadrthe end since they
often don’t give exact values but approximations; and egplyroximations in calcula-
tions will grow in inacuracy.

Imprecise Classic DSm fusion rule (imp-DSmC)

The Imprecise Classic DSm fusion rule (imp-DSmC) which edtethe Classic DSm
fusion rule (DSMC) for combining imprecise (admissibleqqiitative basic belief as-
signments is given fok > 2 sources bynl, g, ~(0) = 0andvA # 0 € D®,

Mbsme(4) = > 11| mix) (16)

X1,X2,...,X,€D®i=1,...k
(X1NXaN...NXp)=A




22 Introduction to the Fusion of Quantitative and Qualitative Beliefs

Imprecise Hybrid DSm fusion rule (imp-DSmH)

Similarly, one can generalize (DSmH) from scalars to setd#®combination ok > 2
sources bynf,q,. (0) = 0andvA # () € D®,

Mhsmi(4) 2 9(A) 0 [S1(4) 8 5§(4) 8 55(4)] (7)

with

S{(A) 2 > 11| ™) (18)

X1,X2,..,X,€D®i=1,..k
(X1NX3N...NXp)=A

53(4) £ > [|miex) (19)
X1,X2,.., XD i=1,...k
[U=AIV[(UED)N(A=T})]

S5(A) & Z H m!(X;) (20)

X17X2,4..,Xk€D@ i=1,....k
u(e(X1NXoN...NXp))=A
(X1NXaN...NX)ED

These (imp-DSmC) and (imp-DSmH) fusion rules are just reextensions of (DSmMC)
and (DSmH) from scalar-valued to set-valued sources ofrimédion. It has been
proved that (16) and (17) provide an admissible imprecisiefoessignment (see the
Theorem of Admissibility and its proof in Ch.6, p. 138, of [Bdn other words, DSm
combinations of two admissible imprecise bba is also an ssible imprecise bba. As
their precise counterparts, the imprecise DSm combinatites arequasi-associative
i.e. one stores in the computer’s memory the conjunctive’suksult and, when new
evidence comes in, this new evidence is combined with th@uootive rule result. In
this way the associativity is preserved.

Imprecise PCRS5 fusion rule (imp-PCR5)

The (imp-PCR5) formula is a direct extension of (PCR5) folarusing addition, mul-
tiplication and division operators on sets. It is given floe tombination ot > 2
sources bynbqps(0) = 0andvX € G\ {0}:
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mfvcm(X) = [ Z H m{(Xi)]

X1,X2,...,X:€G i=1,...,s
(X1NXgN...NXg)=X

B[ Z Z [Num!(X) @ Den’ (X)]] (21)

2<t<s Koy X5, €G\{X}
1Srimess (2. ndt}EPET1({1,.n))
1<ri<ro<...<ri—1<(r¢=s) e(XNXj,N...0X;,)=0

{i1y0ensis JEP* ({1,000,5})

whereNum!(X) andDen! (X) are defined by

Num'(X) 2 [ T} mi, T2 [|TT|C |II]  mi, (X)) (22)

ikl

k1=1,...,m1 1=2,...,;t kj=ri—1+1,...,1;

Den’(X) & [ |]] mi, (X)] 8 [ > I 11 m! (X;)]  (23)

7'kl

ki1=1,...,m 1=2,...,t kij=r;_1+41,....,my

where all denominators-sefSen!(X) involved in (21) are different from zero. If
a denominator-seDen!(X) is such thatinf(Den! (X)) = 0, then the fraction is
discarded. When = 2 (fusion of only two sources), the previous (imp-PCR5) folanu
reduces to its simple following fusion formulaiL, ., -(0) = 0 andvX € G \ {0}

Mpers(X) = miy(X)+

D1 [miX)Pma(Y)) B (mi(X) +my(Y)))B

YeG\{X}
c(XNY)=0

[(M3(X)*mi(Y)) @ (m(X) +mi(Y))] (24)

with

miy(X) £ || mi(X1) @my(Xe)

X1,X2€G
X1NXg=X
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AeDP mI(4) mg(A)
o [0.1,0.2] U {0.3} 0.4,0.5]
6o | (0.4,0.6)U[0.7,0.8] | [0,0.4] U {0.5,0.6}

Table 1: Inputs of the fusion with imprecise bba

Example for (imp-DSmC)

Let's consider® = {61, 6,}, two independent sources with the following imprecise
admissible bba:
Using (imp-DSmC), i.e. the DSm classic rule for sets, one'fet

mbemc(61) = ([0.1,0.2] U {0.3}) @ [0.4,0.5]

([0.1,0.2] @ [0.4,0.5]) U ({0.3} @ [0.4,0.5))
= [0.04,0.10] U [0.12,0.15]

mgSmC(ég) = ((0.4,0.6) U[0.7,0.8]) =1 ([0,0.4] U {0.5,0.6})
= [0,0.40] U [0.42, 0.48]

mhgme (61 N 62) = [([0.1,0.2] U {0.3}) @ ([0,0.4] U {0.5,0.6})]
B [[0.4,0.5] @ ((0.4,0.6) U [0.7,0.8])]
= (0.16,0.58]

Hence finally the fusion admissible result is given by:

A € D® | mpgnc(A) = [m{ & mi](A)
o1 [0.04,0.10] U [0.12,0.15]
05 [0,0.40] U [0.42, 0.48]

611 6, (0.16, 0.58]

6, U6, 0

Table 2: Fusion result with (imp-DSmC)

Example for (imp-DSmH)

If one finds out! that; N 6, Yy (this is our hybrid modelM one wants to deal
with), then one uses the imprecise hybrid DSm rule (imp-D$rud sets (17) and

10A complete derivation of this reslut can be found in [30] pp91310.
11we consider now a dynamic/temporal fusion problem.
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therefore the imprecise belief masg,q, (01 N 62) = (0.16,0.58] is then directly
transferred ont@; U 0, and the others imprecise masses are not changed. Finally, th
result obtained with (imp-DSmH) rule is given in Table 3.

AeD® [ mpg,u(A) =[m]®mi(4)
o [0.04,0.10] U [0.12, 0.15]
6, [0,0.40] U [0.42, 0.48]
01 N0, /\EA 0
6, U 6, (0.16, 0.58]

Table 3: Fusion result with (imp-DSmH) fav1(©)

We can easily check that for the source 1, there exist thaggrecasseém(6;) =
0.3) € ([0.1,0.2] U {0.3}) and (m1(2) = 0.7) € ((0.4,0.6) U [0.7,0.8]) such that
0.3 + 0.7 = 1 and for the source 2, there exist the precise magsgét,) = 0.4) €
([0.4,0.5]) and(mz(62) = 0.6) € ([0,0.4]U{0.5,0.6}) such thad.4+0.6 = 1. There-
fore both sources associated witt{(.) andmi(.) are admissible imprecise sources
of information. It can be easily checked that DSmC yieldspghmdoxical basic belief
a.SSignmen”tnDSmC(el) = [m1 @mg](Hl) =0.12, mDSmC(HQ) = [m1 @mg](eg) =
0.42 andmpgmc (61 N O2) = [my @ mo](61 N O2) = 0.46. One sees from Table 2
that the admissibility is satisfied since there exists atladba (here:ps,,c(.)) with
(mDSmc(al) = 0.12) S m{)Smc(Gl), (mDSmC(GQ) = 0.42) S mIDSmC(GQ) and
(mDSmc(Ql N 02) = 046) € mIDSmC(91 N 65 such that.12 + 0.42 + 0.46 = 1.

Similarly if one finds out that; N 6, = (), then one uses DSmH and one gets:
mpsmp (61 NO2) = 0 andmpg,u (61 U Oy) = 0.46; the others remain unchanged.
The admissibility still holds, because one can pick at leastnumber in each subset
mh s, (.) such that the sum of these numbers is 1. This approach casdesdd
in the similar manner to obtain imprecise pignistic protiies from m’, 4, ., (.) for
decision-making under quantitative uncertain, paraddxnd imprecise sources of
information as well [30, 5].

Examples for (imp-PCR5)
Example no 1
Let's consider® = {6,,0,}, Shafer’s model and two independent sources with the

same imprecise admissible bba as those given in Table 1, i.e.
Working with sets, one gets for the conjunctive consensus

mi,y(01) = [0.04,0.10] U [0.12,0.15]  mi,(62) = [0,0.40] U [0.42,0.48]
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6;) = [0.1,0.2] U {0.3} mI(f2) = (0.4,0.6) U[0.7,0.8]
01) = [0.4,0.5] mi(62) = [0,0.4]U{0.5,0.6}

while the conflicting imprecise mass is given by

Ely =miy (01 N 6y) = [ml(0)) @mi(02)] B [mi(62) @mi(61)] = (0.16,0.58]
Using the PCR5 rule for Proportional Conflict redistributio

e one redistributes the partial imprecise conflicting mag$6,) @ mi(62) to 6,
and 6, proportionally tom?(6;) andmi(6,). Using the fraction bar symbol
instead ofy for convenience to denote the division operator on setshase

a{ yi
[0.1,02]U{0.3}  [0,0.4U{0.5,0.6}
~ ([0.1,0.2] U {0.3}) @ ([0,0.4] U {0.5,0.6})
~ ([0.1,0.2] U {0.3}) B ([0,0.4] U {0.5,0.6})
= [[0,0.08] U [0.05, 0.10] U [0.06,0.12]
U [0,0.12) U {0.15,0.18}]
@ [[0.1,0.6] U [0.6,0.7] U [0.7,0.8]
U [0.3,0.7]U {0.8,0.9}]
~[0,0.12) U {0.15,0.18}
[0.1,0.8] U {0.9}

whence

o [[0, 0.12] U {0.15,0.18}
! [0.1,0.8] U {0.9}
~[0,0.024] U[0.015,0.030] U [0.018, 0.036] U [0,0.036] U {0.045, 0.048}
N [0.1,0.8] U {0.9}
_[0,0.036] U {0.045, 0.048}
N [0.1,0.8] U {0.9}
:[i @]u[i 0.036]U[0.045 0.045]U[0.048 0.048]
0.8" 0.1 0.9 0.9 0.8 " 0.1 0.8 ' 0.1
= [0,0.36] U [0,0.04] U [0.05625,0.45000] U [0.06,0.48] = [0, 0.48]

1@ (0.1,0.2] U {0.3})
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0,0.12] U {0.15,0.18}
0.1,0.8] U {0.9}
= [[0,0.048] U [0,0.060] U [0,0.072] U [0,0.6] U [0, 0.072]
U {0,075,0.090, 0.090,0.108}] & [0.1,0.8] U {0.9}
~[0,0.072] U {0,075,0.090,0.108}

yl =1

] 3(0,0.4] U{0.5,0.6})

[0.1,0.8] U {0.9}
7[1 0.072]U[£ 0.072]U[0.075 0.075]
087 0.1 0.9’ 09 08 ' 0.1

U (0090 0090, 0.108 0108, 0.075 0.090 0108,
08 0.1 08 0.1 09 09 09
=1[0,0.72] U [0,0.08] U [0.09375,0.75] U [0.1125,0.9] U [0.135, 1.08]
U {0.083333,0.1,0.12}
=1[0,1.08] ~ [0, 1]

e one redistributes the partial imprecise conflicting magg,) @ mi(6;) to 6,
and6- proportionally tom? () andmi(#,). One gets now the following pro-
portionalization

I
P Z/Q

0.4,05]  (0.4,0.6) U[0.7,0.8]

~ ([0.4,0.5] @ ((0.4,0.6) U [0.7,0.8])
- (

_

[0.4,0.5] 8 ((0.4,0.6) U [0.7,0.8])
0.16,0.30) U [0.28,0.40]  (0.16,0.40]
(0.8, 1.1)uUf1.1,1.3]  (0.8,1.3]

whence

1 _ (0.16,0.40]
27 (0.8,1.3]
_ (0.064,0.200]
(0.8,1.3]
_ 0.064 0.200
= (G308 )

= 1[0.4,0.5]

= (0.049231, 0.250000)
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yh = m @ (0.4,0.6) U [0.7,0.8]
~(0.064,0.240) U (0.112,0.320]
(0.8,1.3]
~(0.064,0.320] 0.064 0.320
~ (0.8,1.3] = 1.3 7 08 )

= (0.049231, 0.400000)

Hence, one finally gets with imprecise PCR5,

Mpcrs(1) = mis(61) Bai B s
= (]0.04,0.10] U [0.12,0.15]) B [0, 0.48] B (0.049231, 0.250000)
= ([0.04,0.10] U [0.12,0.15]) H (0.049231,0.73)
= (0.089231,0.83) U (0.169231, 0.88)
= (0.089231, 0.88)
méC’RS(HQ) = m{2(92) H y{ & Z/é
= ([0,0.40] U [0.42,0.48]) H [0, 1] B (0.049231, 0.400000) = [0, 1]

Mpeps(01N62) =0

Example no 2

Let's consider a more simple example with = {61, 6}, Shafer's model and two
independent sources with the following imprecise admiediba

mi(6;) = (0.2,0.3) mi(6;) =0.6,0.8]
mb(6) = [04,0.7)  mi(f) = (0.5,0.6]

Working with sets, one gets for the conjunctive consensus

ml,(0:) = (0.08,0.21)  mi,(hy) = (0.30,0.48)
The total (imprecise) conflict between the two imprecisentjtetive sources is given
by
ki = miy(01 N 02) = [my(01) @ m5(02)] B [m](02) B m3 (61)]
((0.2,0.3) @ (0.5,0.6]) B ([0.4,0.7] 1 [0.6,0.8])
= (0.10,0.18) B [0.24, 0.56) = (0.34,0.74)
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Using the PCRS5 rule for Proportional Conflict redistributiaf partial (imprecise) con-
flict m{(0,) @ mi(62), one has

ol oyl (0.2,0.3) @ (0.5,0.6]  (0.10,0.18)

(0.2,0.3)  (0.5,0.6] (0.2,0.3)53(0.5,0.6]_ (0.7,0.9)
whence

, (0.10,0.18)
T =
(0.7,0.9)

(0.02,0.054)
(0.7,0.9)

B (0.02 0.054)
~09° 0.7

= (0.022222,0.077143)

©(0.2,0.3)

, (0.10,0.18)
YN ="53na0
(0.7,0.9)

(0.050,0.108)
(0.7,0.9)

B (0.050 0.108)

~Y09 07

= (0.055556, 0.154286)

= (0.5, 0.6]

Using the PCRS5 rule for Proportional Conflict redistributiof partial (imprecise)
conflictm? (62) @ mi (1), one has

oy 0.4,0.7) @ [0.6,0.8]  [0.24,0.56)

[0.4,0.7) [0.6,0.8] [0.4,0.7) B [0.6,0.8] [1,1.5)
whence

0.24,0.56 0.096,0.392) 0.096 0.392
Th = [0.24,0.56) @[0.4,0.7) = [ ’ )

- = (0.064,0.392
1,1.5) 1,1.5) (G5 7 ) = (0064,0392)

. [0.24,0.56) 0.144,0.448) 0.144 0.448
= B2 5 10.6,0.8] = - = (0.096,0.448
2= g 20608 1,1.5) (G5 7 ) = (0096,0448)

Hence, one finally gets with imprecise PCR5,
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méo%(gl) = m{2(91) & x{ B xé
= (0.08,0.21) B (0.022222,0.077143) H (0.064, 0.392)
= (0.166222, 0.679143)

mf?CR5(92) = m{2(92) &) y{ &) yé
= (0.30,0.48) H (0.055556, 0.154286) H (0.096, 0.448)
= (0.451556,1.08229) = (0.451556, 1]

Mpegs(01N62) =0

3 Fusion of qualitative beliefs

Different qualitative methods for reasoning under undetyahave been developed
mainly in Artificial Intelligence since the last decades. eyhattract more and more
people of Information Fusion community, specially thosekig in the development
of modern multi-source systems for defense. George Polya was the first mathe-
matician to attempt a formal characterization of qualiatiuman reasoning in 1954
[27], then followed by Lofti Zadeh’s works [44]-[51]. Theterest of qualitative rea-
soning methods is to help in decision-making for situationg/hich the precise nu-
merical methods are not appropriate (whenever the infoom@tput are not directly
expressed in numbers). Several formalisms for qualitathsoning have been pro-
posed as extensions on the frames of probability, podsilaitid/or evidence theories
[1, 11, 4, 40, 17, 48, 51, 43]. The limitations of numericaleiques are discussed in
[23]. Our purpose here is not to browse and to write a surveglldechniques dealing
with qualitative information, but only to mention brieflyglmain attempts for solving
the combination problem. A good presentation of these fgcdes can be found in
Parsons’ milestone book [25]. Among all available teche&jwne must however give
credit to Wellman’s works [39] who proposed a general charazation of "qualitative
probability” to relax precision in representation and oeasg within the probabilistic
framework. His "qualitative” Probabilistic Networks (QPMased on a Qualitative
Probability Language (QPL) defined by a set of numerical dyihgy probability dis-
tributions belongs actually to the family of imprecise paibbity [38] and probability
bounds analysis (PBA) methods [12] and cannot be consideudas a qualitative
approach since it deals with quantitative (imprecise) phility distributions. Based
on Dempster-Shafer Theory, Wong and Lingras [41] proposeetod for generat-
ing a (numerical) basic belief function from preferencatiens between each pair of
propositions specified qualitatively. Their method doepnovide however a unique
solution and doesn't check the consistency of qualitatiedgoence relations and can-
not be truly considered as a full qualitative method. Brysoml. [3, 20] proposed

12Where both computers, sensors and human experts are involtheslivop.
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a Qualitative Discriminant Procedure (QDP) that involvesldative scoring, impre-
cise pairwise comparisons between pairs of propositiodgaroptimization algorithm
to generate consistent imprecise quantitative belieftftando combine. In [21, 22],
Parsons proposed for the first time (upon the knowledge oétitieors) a qualitative
Dempster-Shafer Theory (QET), by using techniques fromiitatise reasoning [1].
Based on operation tables, he introduced a very simplenagtib for qualitative ad-
dition + and multiplicationx operators. Because of impossibility of qualitative nor-
malization, Parsons used the un-normalized version of 3&smip rule by committing

a qualitative masso the empty set following the open-world approach of Sme#g. [
This approach cannot deal however with truly closed-worlobfems because there
is unfortunately no issue to transfer the conflicting qasile mass or to normalize
the qualitative belief assignments in the spirit of DST.c8i1998, Parsons started to
develop Qualitative Probabilistic Reasoner (QPR) [24, Zhce middle of nineties,
Lofti Zadeh has proposed a new paradigm of computing withdedCW) [48]-[51]

to combine qualitative/vague information expressed inreianguage. CW is done
essentially in three major steps: 1) a translation of gat@li¢ information into fuzzy
membership functions, 2) a fuzzy combination of fuzzy mership functions; 3) a
retranslation of fuzzy (quantitative) result into natueaguage. All these steps cannot
be uniquely accomplished since they depend on the fuzzyatperchosen. A possible
issue for the third step is proposed in [43].

In this section we propose a simple arithmetic of linguitdloels which allows a
direct extension of classical (quantitative) combinatiates proposed in the DSmT
framework into their qualitative counterpart. Qualitatibeliefs assignments are well
adapted for manipulated information expressed in nataraguage and usually re-
ported by human expert or Al-based expert systems. In otbedsywe propose here
a new method for computing directly with words (CW) and conmgrdirectly qual-
itative information Computing with words, more precisetyngputing with linguistic
labels, is usually more vague, less precise than computitignumbers, but it is ex-
pected to offer a better robustness and flexibility for carmyg uncertain and con-
flicting human reports than computing with numbers becamsedst of cases human
experts are less efficient to provide (and to justify) preasantitative beliefs than
qualitative beliefs. Before extending the quantitativenDiSbased combination rules
to their qualitative counterparts, it will be necessary édirte few but new important
operators on linguistic labels and what is a qualitativeebelssignment. Then we
will show though simple examples how the combination of ate beliefs can be
obtained in the DSmT framework.

3.1 Qualitative Operators

Let's define a finite set of linguistic labels = {L1,La,..., Ly} wherem > 2is an
integer. L is endowed with a total order relationshig so thatl; < Lo < ... < L,,.
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To work on a close linguistic set under linguistic additioanultiplication operators,
we extendsL with two extreme valued., and L.,+1 Where L, corresponds to the
minimal qualitative value and,,,,+; corresponds to the maximal qualitative value, in
such a way that

Lo<Li<Ly=<...<Lp -<Lm+1

where< means inferior to, or less (in quality) than, or smaller (irality) than, etc.
hence a relation of order from a qualitative point of view. t Buve make a corre-
spondence between qualitative labels and quantitativeesabn the scal, 1], then

Lpin = Lo would correspond to the numerical value 0, whilg.x = L,,+1 would

correspond to the numerical value 1, and eA¢hvould belong tdo, 1], i. e.

Lmin = LO < Ll < L2 <... < Lm < L7n+1 = Lmax
From now on, we work on extended ordered betf qualitative values
L= {L07 i: L’m+1} = {L0> L17 L2a ceey Lma LTTL+1}

The qualitative addition and multiplication operators egspectively defined in the
following way:

e Addition :
Liyj, ifi+j< 1,
Lit ;=4 Mrosme (25)
Lpy1, fi+j>m+1.
e Multiplication :
L; x Lj = Linin{s,5) (26)

These two operators are well-defined, commutative, agbagiand unitary. Addi-
tion of labels is a unitary operation sindey = L,,;, is the unitary element, i.e.
Li+ Ly = Lo+ L; = Liyg = L;forall 0 < i < m + 1. Multiplication of
labels is also a unitary operation sinég, ;1 = Lnax IS the unitary element, i.e.
L; x Lm+1 = Lm+1 x L; = Lmin{i,erl} = L;for0 <i <m+1. Ly is the unit ele-
ment for addition, while_,,,; is the unit element for multiplication’ is closed under
+ and x. The mathematical structure formed @, +, x) is a commutative bisemi-
group with different unitary elements for each operatiom Mtall that a bisemigroup
is a setS endowed with two associative binary operations such.$hiatclosed under
both operations.

If L is not an exhaustive set of qualitative labels, then othieelfamay exist in
between the initial ones, so we can work with labels and nushbsince a refinement
of L is possible. When mapping froth to crisp numbers or intervald,, = 0 and
L,,+1 =1, while0 < L; < 1, for all 4, as crisp numbers, at; included in[0, 1] as
intervals/subsets.
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For example,L1, Lo, L3 and L4 may represent the following qualitative values:
L, = very poor,L, £ poor, L3 = good andL, £ very good wherez symbol means
"by definition”.

We think it is better to define the multiplicationof L; x L; by L, ¢, 53 because
multiplying two numbers: andb in [0, 1] one gets a result which is less than each
of them, the product is not bigger than both of them as Bolastad. did in [2] by
approximatingL; x L; = L;;; > max{L;,L;}. While for the addition it is the
opposite: adding two numbers in the interj@ll] the sum should be bigger than both
of them, not smaller as in [2] case whele+ L; = min{L;, L;} < max{L;,L;}.

3.2 Qualitative Belief Assignment

We define a qualitative belief assignment (gba), and we tglialitative belief mass
or g-masdor short, a mapping function

gm(.) : G— L

whereG corresponds the space of propositions generatedrnvithdu operators and
elements of taking into account the integrity constraints of the modr example
if Shafer's model is chosen fa®, thenG is nothing but the classical power s
[29], whereas if free DSm model is adoptétwill correspond to Dedekind’s lattice
(hyper-power setD® [30]. Note that in this qualitative framework, there is noywa
to define normalizegm(.), but qualitative quasi-normalization is still possiblesagn
further. Using the qualitative operations defined previpuge can easily extend the
combination rules from quantitative to qualitative. In Heguel we will consides > 2
qualitative belief assignmenisn; (.), ..., gm(.) defined over the same spaGeand
provided bys independent sources, . .., S, of evidence.

Important note: The addition and multiplication operators used in all gative fu-
sion formulas in next sections correspondjtalitative additionandqualitative mul-
tiplication operators defined in (25) and (26) and must not be confusddalgssical
addition and multiplication operators for numbers.

3.3 Qualitative Conjunctive Rule (QCR)

The qualitative Conjunctive Rule (QCR) ef > 2 sources is defined similarly to the
guantitative conjunctive consensus rule, i.e.

gmeer(X) = > [[aemi(xX)) (27)
X1,..,.X:€G i=1
X1 AX=X
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The total qualitative conflicting mass is given by

X1,..,X:€G i=1
X1N..NX,=0

3.4 Qualitative DSm Classic rule (g-DSmC)

The qualitative DSm Classic rule (qDSmC) for> 2 is defined similarly to DSm
Classic fusion rule (DSmC) as followgtn, psmc (#) = Lo and for allX € D€\ {0},

gmepsmo(X) = > [ ami(X) (28)

X1,,...,X,€D® =1
X1N..NX=X

3.5 Qualitative DSm Hybrid rule (q-DSmH)

The qualitative DSm Hybrid rule (gDSmH) is defined similattyquantitative DSm
hybrid rule [30] as followsgmgpsmu () = Lo and for allX € G\ {0}

amapsmn(X) 2 6(X) - [a51(X) + aS2(X) + aSs(X)| (29)

whereg(X) is thecharacteristic non-emptiness functioha setX, i.e. ¢(X) = Ly,+1

if X ¢ @andg(X) = Lo otherwise, wher@ = {@x, 0}. @4 is the set of all elements
of D® which have been forced to be empty through the constrairteeahodelM and
(0 is the classical/universal empty sef:(X) = gmgpsmc(X), ¢S2(X), ¢S5(X) are
defined by

g5 (X) £ > [T ami(x:) (30)

X1,X2,...,X.€D® =1
(XlﬁXQQ...ﬂXS):X

452(X) 2 3 [Lami(x2) (31)

X1,X2,..,Xs€0 i=1
U=XIVIUEBA(X=1)]

q53(X) 2 > [T ama(x) (32
X1,X2,...,X,eD® i=1
u(c(XlﬁXgﬁ...ﬁXs)):X
(X1NX2N...NX)ED

with ¢/ £ u(X;) U... Uu(X,) whereu(X) is the union of alld; that compose¥,
I; 2 6, U...U#, is the total ignorance, and X) is the canonical form ok, i.e. its
simplest form (for example X = (AN B)N(AUBUC), ¢(X) = AN B). ¢51(X)
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is nothing but the gDSMC rule farindependent sources basedoty (0); ¢S2(X) is
the qualitative mass of all relatively and absolutely eng#ts which is transferred to
the total or relative ignorances associated with non axiistieconstraints (if any, like
in some dynamic problems)Ss (X) transfers the sum of relatively empty sets directly
onto the canonical disjunctive form of non-empty sets. qBbiSgeneralizes gDSmMC
works for any models (free DSm model, Shafer's model or artyridymodels) when
manipulating qualitative belief assignments.

3.6 Qualitative PCR5 rule (g-PCR5)

In classical/quantitative DSmT framework, the Propomtio@onflict Redistribution
rule no. 5 (PCR5) has been proven to provide very good andenheesults for com-
bining (quantitative) belief masses [32, 19, 9]. When degliith qualitative beliefs
and using Dempster-Shafer Theory (DST), we unfortunatefyrot normalize, since
it is not possible to divide linguistic labels by linguistabels. Previous authors have
used the un-normalized Dempster’s rule, which actuallygis\alent to the Conjunc-
tive Rule in Shafer's model and respectively to DSm conjwerctule in hybrid and
free DSm models. Following the idea of (quantitative) PCR&dn rule (9), we can
however use a rough approximation for a qualitative versfd®CR5 (denoted qPCR5)
as it will be presented in next example, but we did not sucseefdr to get a general
formula for qualitative PCR5 fusion rule (g-PCR5) becatmsedivision of labels could
not be defined.

3.7 Example

Let's consider the following set of ordered linguistic l&e = { Lo, L1, Lo, L3, Ly, L5}
(for example,L;, Lo, L3 and L, may represent the valueg:; £ very poot L, £
poor, Lz = goodand L, £ very good where2 symbol meansy definitior), then
addition and multiplication tables are

Lo | Lo L1 Ly L3 Li Ls
Ly | Ly Ly L3 Ly Ls Ls
Ly | Ly L3 Lis Ls Ls Ls
Ly | Ly Ly Ls Ls Ls Ls
Ly | Ly Ls Ls Ls Ls Ls
Ls | Ls Ls Ls Ls Ls Ls

Table 4: Addition table

Let's consider now a simple two-source case with a 2D frane= {6;,6-},
Shafer’'s model fo®, and gba’s expressed as follows:

qm1(01) = L1, qmi(02) = L3, qmi(61U6b) = L,
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Table 5: Multiplication table

qma(01) = La, qma(02) = L1, qma(61 Ubs) = Ly

¢ Fusion with (qCR): According to qCR combination rule (27), one gets the result
in Table 6, since

gmqcr(6h) = gma(01)gma(61) + gma (01)gmea(61 U 62)
+ gma(61)gm1 (61 U 69)
= (L1 X L) + (L1 x La) 4+ (La x L)
=Li+Li+Li=Liy141=1L3

qmqcor(02) = qmi(02)gma(02) + gmq(62)gma (6, U 2)
+ gma(62)gmq (61 U 63)
= (Ls x L1) + (L3 x Lo) + (L1 x Ly)
=L1+ Lo+ L1 =Liyop1 =1Ly

qquR(gl U 92) = qm1(01 U 92)qm2(91 U 92) = Ll X L2 = Ll

qmqacr(0) £ K12 = gmq(01)gma(02) + gma (02)gma(61)
Z(Ll XL1)+(L2 XL3):L1+L2:L3

In summary, one gets

e Fusion with (qDSmMC). If we accepts the free-DSm model instead Shafer’s
model, according to qDSmC combination rule (28), one getsréisult in Ta-
ble 7,
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01 0y 61 U0, ) 61 N0
qmq () L1 L3 L1

me() LQ Ll L2

qmgor(.) | Lz Ly Ly L3 Lo

Table 6: Fusion with gCR

01 Oy 6,U0 D H1Nb,
qml() L1 Ld L1

me() LQ L1 L2

qmgpsmc(.) | Ls Ly Ly Lo L3

Table 7: Fusion with gDSmC

e Fusion with (gDSmH): Working with Shafer’'s model fo®, according to gDSmH
combination rule (29), one gets the result in Table 8.

sinceqmgpsmu (61 U 02) = Ly + Ly = Ly.

e Fusion with (qPCR5). Following PCR5 method, we propose to transfer the
qualitative partial masses

a) gm1(01)gme(02) = L1 x L1 = L4 to 6, andés in equal parts (i.e. pro-
portionally toL; and L, respectively, bul,; = L,); hence%Ll should go
to each of them.

b) gma(01)gmq(02) = Lo x L3 = Lo to 61 andf, proportionally toL, and
L3 respectively; but since we are not able to do an exact prigpaitzation
of labels, we approximate through transferri@gg to 6; and %Lg to 6.

The transfe /3L, to ; and2/3 L to 65 is not arbitrary, but it is an approxima-
tion since the transfer was done proportionallyitpand L3, and L, is smaller
than L3; we mention that it is not possible to do an exact transfgrridobody
in the literature has done so far normalization of labelsl ae tried to do a
quasi-normalization [i.e. an approximation].

Summing a) and b) we ge%Ll + %Lg ~ L, which represents the partial
conflicting qualitative mass transferred 4, and %Ll + %LQ ~ Lo, which
represents the partial conflicting qualitative mass tremstl tod,. Here we
have mixed qualitative and quantitative information.

Hence we will finally get:

Fore the reason that we can not do a normalization (neitheiqurs authors
on qualitative fusion rules did), we propose for the firstdithe possibility of
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01 02 61 U6, 0 01 N 0Oy
gma(.) Ly Lj Ly

qmg() L2 L1 L2

qmgpsmu(.) | Ly L Ly Lo Lo

Table 8: Fusion with gDSmC

01 02 01 U 6y ] 01 N6y
gmi(.) Ly Lj Ly

qmg() L2 L1 L2

qmgpcrs(.) | La  Ls L, Lo Lo

Table 9: Fusion with qPCR5

guasi-normalizatior(which is an approximation of the normalization), i.e. in-
stead of dividing each qualitative mass by a coefficient afnmadization, we
subtractfrom each qualitative mass a qualitative coefficient (Ialoélquasi-
normalization in order to adjust the sum of masses.

Subtraction orl is defined in a similar way to the addition:

P AL (33)
Lo, if i < j;

L is closed under subtraction as well.

The subtraction can be used for quasi-normalization onby, imoving the final
label result 1-2 steps/labels up or down. It is not used twgewith addition or
multiplication.

The increment in the sum of fusioned qualitative masses éstduhe fact that
multiplication on L is approximated by a larger number, because multiplying
any two numbers, b in the interval[0, 1], the product is less than each of them,
or we have approximated the produack b = min{a, b}.

Using the quasi-normalization (subtractihg), one gets with gDSmH and qPCR5,
the following quasi-normalizednasses (we use symbol to specify the quasi-
normalization):
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01 0y 61 U0, ) 61 N0
qmq () L1 Lg L1

me() L2 L1 LQ

aMypsmu(-) | L2 L3 Ly Lo Lo
qm;PCRS(.) L3 L4 Lo LO LO

Table 10: Fusion with quasi-normalization

4 Conclusion

In this paper we have presented the foundations of DSmT andain combination
rules for dealing with both the quantitative or qualitativeliefs. The combination
of qualitative beliefs published here results from veryergcresearch investigations.
DSmT although not sufficiently known in the information foisiand artificial intelli-
gence communities as any new emerging theory has howeeadglbeen successfully
applied in different fields like multitarget tracking ana@ssification, or remote sensing
application. We hope that this special issue of Informa&d®ecurity Journal devoted
to Fusing Uncertain, Imprecise and Conflicting informatiaii help readers involved
in information fusion to become curious and hopefully masenéortable with our re-
search works and our new ideas in data fusion. DSmT is a nemigireg paradigm
shift for the combination of precise (and even imprecise)entain and potentially
highly conflicting quantitative or qualitative sources ofdrmation. It is important to
emphasize that most of methods, like discounting techsidoreexample, developed
to improve the management of quantitative beliefs in DeerpShafer Theory can also
directly be applied in DSmT framework.
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Tracking: Applications and Advances, Vol.2 (Y. Bar-Shalom Editork isl member of IEEE
and of Eta Kappa Nu, serves as reviewer for different Internatidmainals, teaches a MS-MTT
and Data Fusion course at the French ENSTA Engineering School, ealtab for the devel-
opment of the International Society of Information Fusion (ISIF) sit@@8, and has served as
Local Arrangements Organizer for the Third International Confegern Information Fusion,
FUSION 2000, July 10- 13, in Paris. He has been involved in the Tediogram Commit-
tees of Fusion 2001-2004 International Conferences. Since 2@0%,ehmember of the board
of the International Society of Information Fusion (http://www.isif.orgilaerved as secretary
for ISIF since 2001. He served as executive vice-president &f if52004. In 2003, he orga-
nized with Professor Smarandache, the first special session dévqtiedisible and paradoxical
reasoning for information fusion at the International conferencenfarmation Fusion, Fusion
2003, Cairns , Australia and also a panel discussion and a speci@nsessDSmT at Fusion
2004, Stockholm in June 2004. Dr. Dezert gave several invited sesramal lectures on Data
Fusion and Tracking during recent past years. He also participateember to Conference
Technical Committee of Fusion 2005, Fusion 2006 International Cenéeron Information Fu-
sion and Fuzzy Sets and Technology Conference, Salt Lake City, US&yr2005. He is also
Associate Editor of Journal of Advances in Information Fusion (JAM®)st recent advances on
DSmT can be found at : http://www.gallup.unm.edu/ smarandache/CmT

FLORENTIN SMARANDACHE Florentin Smarandache was born in Balcesti, Romania, in
1954. He got a M. Sc. Degree in both Mathematics and Computer Sciemete University

of Craiova in 1979, received a Ph. D. in Mathematics from the State silyef Kishinev in
1997, and continued postdoctoral studies at various American itiesr( New Mexico State
University in Las Cruces, Los Alamos National Laboratory) after eatign. In 1988 he escaped
from his country, pasted two years in a political refugee camp in Tugday,in 1990 emigrated
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to USA. In 1996 he became an American citizen. Dr. Smarandacheed@k a professor of
mathematics for many years in Romania, Morocco, and United Statebeanden 1990-1995
as a software engineer for Honeywell, Inc., in Phoenix, Arizona.résgnt, he teaches math-
ematics at the University of New Mexico, Gallup Campus. Very prolificishihne author, co-
author, and editor of 75 books, over 100 scientific notes and articldsamributed to about 50
scientific and 100 literary journals from around the world (in mathematiés;rimatics, physics,
philosophy, rebus, literature, and arts). He wrote in Romanian, FramchEnglish. Some of
his work was translated into Spanish, German, Portuguese, Italian, ,DArahic, Esperanto,
Swedish, Farsi, Arabic, Chinese. He was so attracted by contradictiansrtil980s, he set
up the "Paradoxism” avant-garde movement in literature, philosophyewen science, which
made many advocates in the world, and it's based on excessive usétbéses, antinomies,
paradoxes in creation - making an interesting connection between maitenemgineering,
philosophy, and literature [http://www.geocities.com/charlestle/paraddxistt and led him
to coining the neutrosophic logic, a logic generalizing the intuitionistic fuzzy ldgit is able
to deal with paradoxes. In mathematics there are several entries i@anadndache Functions,
Sequences, Constants, and especially Paradoxes in international§aamd encyclopedias. He
organized the 'First International Conference on Neutrosophidseatyniversity of New Mex-
ico, 1-3 December 2001 [http://www.gallup.unm.edu/ smarandackleutConf.htm]. Small
contributions he had in physics and psychology too. Much of his worklgsihéThe Florentin
Smarandache Papers” Special Collections at the Arizona State Utyiv8empe, and Texas
State University, Austin (USA), also in the National Archives (Rm. Vica@) Romanian Lit-
erary Museum (Bucharest), and in the Muse de Bergerac (Fraimc2p03, he organized with
Dr. Jean Dezert, the first special session devoted to plausible artbgena reasoning for in-
formation fusion at the Fusion 2003 International conference onrrdtion Fusion in Cairns,
Australia.



