
INFORMATION & SECURITY. An International Journal, Vol.28, No. 2, 2012, 223-235.
© ProCon Ltd. This article cannot be reprinted, published on-line or sold without written permission by ProCon.

 I&S

FORMAL VERIFICATION OF NUCLEAR SYSTEMS:
PAST, PRESENT, AND FUTURE

Mark LAWFORD and Alan WASSYNG

Abstract: In this paper we review the Systematic Design Verification Process used
on the computer controlled shutdown systems of the Darlington Nuclear Generating
Station Shutdown Systems. The Software Requirements Specification (SRS) made
extensive use of tabular expressions to document the requirements as did the Soft-
ware Design Description (SDD). Systematic Design Verification was then per-
formed based upon the 4-Variable Model to verify that the design was correct with
respect to its requirements. Custom tools were developed to process the SRS and
SDD documents to produce “block theorems” for the PVS theorem prover that were
used to verify the majority of the functional requirements. We discuss how the
formal methods were integrated into the forward going software development proc-
ess and techniques that were used to manage the complexity of the verification task.
We offer some lessons learned in the process and discuss the future of formal veri-
fication for nuclear systems.

Keywords: Formal methods, verification, software development process, software
tools, safety-critical software.

Introduction

The two Shutdown Systems (SDS1 and SDS2) for the Darlington Nuclear Generating
Station in Ontario, Canada, were the first computer controlled shutdown systems in
Canada. This paper is not about the original Darlington Project, when Ontario Hydro
was forced to reverse engineer tabular specifications for requirements and the code in
order to get regulatory approval 1 to operate the Darlington station. People often cite
the difficulty and cost of the original verification project when they want to dismiss
tabular methods. No other formal method applied after the fact would have fared any
better. Simply put, trying to apply formal methods after the fact to software that has
been developed without formal verification in mind, is bound to be a difficult task re-
gardless of the formal techniques employed.

This paper is about the Redesign Project, performed in the 1990’s, in which formal
techniques were integrated in the forward development process.2 One of the essential

224 Formal Verification of Nuclear Systems: Past, Present, and Future

components of the process was a Systematic Design Verification, conducted on each
of the redesigned shutdown systems, SDS1 and SDS2. For each SDS, the Software
Requirements Specification (SRS) made extensive use of tabular expressions to
document the requirements as did the Software Design Descriptions (SDD). The
Systematic Design Verification was based upon Parnas and Madey’s 4-Variable
Model 3 and was used to verify that the design was correct with respect to its require-
ments. Custom tools were developed to process the SRS and SDD documents to pro-
duce “block theorems” for the PVS theorem prover that were used to verify the ma-
jority of the functional requirements. (To complete the picture, a table-based verifi-
cation process was also used to prove compliance of the code with respect to its de-
sign.)

What is a Shutdown System (SDS)?

A Shutdown System is a watchdog system that monitors reactor system parameters
and shuts down (trips) the reactor if it observes “bad” behavior. The process control
is performed by a separate Digital Control Computer (DCC) since it is not as critical.
This design follows the principle of separation of safety and control. Each SDS con-
sists of three computer systems (called “channels”), and the two SDS are diverse with
respect to their hardware, programming languages, teams, and method of achieving a
plant shutdown. The safety-critical component of each channel is a computer known
as the “Trip Computer.” All three Trip Computers in each SDS are identical.

Formal verification of each Trip Computer design was employed in the Darlington
Redesign Project for a number of reasons. Unnecessary trips incur significant costs as
coal or gas fired power plants have to be brought on line to meet demand. Without
formal verification it can be difficult to make modifications and then get regulatory
approval for the changes since even a relatively minor change results in another ex-
tensive and expensive round of testing and review. Failure of the system could have
catastrophic consequences, but testing simply cannot cover all possible input cases
for the system and there is simply too much detail for a person to catch everything by
review alone.

Overview of the Darlington Redesign Project

The block diagram showing the overall structure of the SDS1 Trip Computer is
shown in Figure 1. The system had 84 monitored variables (inputs) and 27 controlled
variables (outputs). The software design consisted of 60 modules with 280 access
programs implemented by 40,000 lines of code, including comments. Approximately
33,000 lines of code were written in FORTRAN and the remaining 7,000 were as-
sembler.

 Mark Lawford and Alan Wassyng

225

Figure 1: Block Diagram of the SDS1 Trip Computer.

The CANDU Computer Systems Engineering Centre for Excellence Standard for
Software Engineering of Safety Critical Software first fundamental principle states:
“The required behavior of the software shall be documented using mathematical
functions in a notation which has well defined syntax and semantics.” 4

Functional specifications were used wherever possible for the following reasons:

226 Formal Verification of Nuclear Systems: Past, Present, and Future

Determinism: It is desirable to have unambiguous descriptions of safety critical be-
havior; Clarity: It is easier for domain experts and developers to understand func-
tional requirements; Preference: Engineers prefer to specify precise behavior and ap-
peal to tolerances when necessary; Sufficient: Functional methods are often sufficient
and are easily automated.

Tolerances were taken into account on the system inputs and outputs where neces-
sary, effectively making the specifications relational.5 With mathematical require-
ments in place, it becomes possible to formally verify that the system design meets
the requirements as a part of the development process.

Figure 2 shows the idealized development process together with the tools used in
producing the documentation and software for the Darlington SDS Redesign. Part of
the assurance case was implicitly embodied in the standard employed in the SDS Re-
design, as follows:

1. The requirements are specified mathematically and checked for complete-
ness and consistency. A hazards analysis is required to document risks and
especially to identify sources of single point failures. These hazards have to
be mitigated in the specified requirements.

Figure 2: Idealized Development Process.

 Mark Lawford and Alan Wassyng

227

2. Compliance between requirements and software design is mathematically
verified.

3. Compliance between the code and software design is verified through both
mathematical verification and testing. Compliance between code and re-
quirements is shown explicitly through testing. However, there is an implicit
argument of compliance between code and requirements through the transi-
tive closure of the mathematical verification – code to design, and design to
requirements.

Some of the major benefits of using tool supported formal methods include:

 Independent checks which are unaffected by the verifier’s expectations;

 Domain coverage through the use of tools that can often be used to check all
input cases – something that is not always possible or practical with testing;

 Detection of implicit assumptions and ambiguous/inconsistent
specifications;

 Additional capabilities such as the generation of counter-examples for de-
bugging, type checking, verifying whole classes of systems, etc.

While these benefits are significant, one has to be careful to choose a formal method
that results in specifications that are readable by domain experts and that can provide
tool support that is integrated into the forward going software development process.

Tabular Expressions - A Useable Rigorous Method

For the redesign, the Software Requirements Specification (SRS) made extensive use
of tabular expressions to document the requirements as did the Software Design De-
scription (SDD). Ontario Hydro had some experience with tabular expressions since
they were used to obtain the licence to operate Darlington in the original verification
effort. Tabular methods are well suited to the documentation of the Trip Computer
control functions that typically partition the input domain into discrete modes or op-
erating regions. They were found to be readable by domain engineers, operators, test-
ers and developers and there had been other success stories using tabular methods,
such as the U.S. Navy’s A-7 aircraft.6 On the Darlington Redesign Project, tabular
methods eventually showed significant benefits when used in a process with inte-
grated tool support.

Tabular Expressions Semantics
Consider the following example table. Here each ci is a Boolean expression, when ci
is true f returns ei.

228 Formal Verification of Nuclear Systems: Past, Present, and Future

In order for the table to be proper, it must satisfy two properties:

1) Disjointness: i≠j → (ci ∧ cj ↔٣);

2) Completeness: (c1 ∨ c2 ∨… ∨ cn) ↔١.

The following example illustrates why tables are effective.

The logical expression on the left is equivalent to the tabular expression on the right,
but generally people find the table much easier to understand.

Formal Verification Used in “Certifying” Darlington

This section provides an overview of the Systematic Design Verification (SDV) pro-
cedure and corresponding tool support employed on the SDS Redesign Project. We
highlight elements of the process, such as the decomposition of proof obligations, that
facilitate tool support and reduce the effort required to perform rigorous design veri-
fication, including creation and maintenance of the process documents. In particular,
we concentrate on the verification of functional properties utilizing tabular notation.
Details of the software process and notation,7 the decomposition of the proof obliga-
tions 8 and the complete procedure 9 can be found in the provided references.

The objective of SDV is to verify, using mathematical techniques or rigorous argu-
ments, that the behavior of every output defined in the SDD (the design document) is
in compliance with the requirements for the behavior of that output as specified in the
SRS (the requirements document). It is based upon a specialization of the 4-variable
model that verifies the functional equivalence of the SRS and SDD by comparing
their respective one step transition functions. The resulting proof obligation in this
special case is:

REQ = OUT ○ SOF ○ IN (1)

and is illustrated in the commutative diagram of Figure 3. Here REQ and SOF are the
one step transition functions of the requirements and design respectively.

“Vertical” Decomposition of Proof Obligations

To facilitate verification and good design, we decompose the proof obligation (3)
“vertically” taking into account hardware hiding modules (see Figure 4). By creating

 Mark Lawford and Alan Wassyng

229

Figure 3: 4-Variable Model of Parnas & Madey.

“pseudo” representations of the monitored and controlled quantities within the soft-
ware, we allow for a more direct implementation of the requirements within the soft-
ware, resulting in the decomposed proof obligations:

AbstC ○ REQ = SOFreq ○ AbstM (2)

AbstM = SOFin ○ IN (3)

idC = OUT ○ SOFout ○ AbstC (4)

Here (3) and (4) represent verification of hardware hiding modules, Mp is the pseudo-
monitored variables and Cp is the pseudo-controlled variables.

Consider the following example of a hardware hiding module corresponding to the
left side triangle of the commutative diagram in Figure 4. The temperature of the pri-
mary heat transport system which belongs to M might have a value of 500.3 Kelvin.
A temperature sensor converts this to 3.4 volts which is measure by a 12-bit A/D
which maps this via (part of) IN in a parameter with a value of 2785 counts in I. A
hardware hiding module might then process this input corresponding to map SOFin,
producing a value of 500 Kelvin in the appropriate temperature variable of the soft-
ware state space Mp.

Note the “wrong way” AbstC arrow - this is used to reduce the number of required ab-
straction functions since the output of one block comparison may be the input to

Figure 4: “Vertical” decomposition using Hardware Hiding.

230 Formal Verification of Nuclear Systems: Past, Present, and Future

another. This can effectively reduce by up to 1⁄2 the number of abstraction functions
that the verifier is required to supply as inputs to the tools. The proof obligation (4)
precludes the possibility of trivial implementations. While the invertibility of OUT
implied by (4) is not possible in all situations, it was applicable to the majority of the
safety critical requirements on Darlington.

To make the proof obligations manageable, further “vertical” decomposition of the
proof obligations can be obtained by isolating outputs. In effect, we project C onto a
single output and then restrict REQ to the relevant subset of M. The next simplifying
step we make is a “horizontal” decomposition based upon dataflow.

“Horizontal” Decomposition of Proof Obligations

With the aid of “supplementary functions0” the main block comparison proof (2) can
be sequentially decomposed as shown in Figure 5 into a sequence of simpler obliga-
tions of the form:

Abstvi ○ REQi = SOFi ○ AbstVi-1 (5)

The cost of this decomposition is that the verifier must provide a cross reference be-
tween internal quantities in the requirements and design in the form of the abstraction
functions: AbstVi : Vi → Vip. Now we see the benefit of “wrong way” arrows. The
same AbstVi can be used on the output of one block and then the input of the next
block. We note that we only need to check invertibility of AbstC to satisfy (4) and not
these internal abstraction functions.

Some very simple design rules made the mathematical verification of the code against
the design much more tractable. For example, we use a Get, Process, Set heuristic so
that if there is a dependency upon the value of an asynchronous variable (e.g. a
timer), it is read when “getting” all the other inputs and its stored value is then used
throughout the module. Without this heuristic it may be impossible to formally verify
blocks involving asynchronous variables.

Figure 5: Horizontal decomposition of (2) into verification blocks.

 Mark Lawford and Alan Wassyng

231

A formal method should be tightly integrated with the software development process,
i.e. it is directly applied to project documents used by all parties as part of the for-
ward development process. This includes requiring integrated tool support for the
formal methods in order to make them practical. Figure 6 shows the custom tools de-
veloped to support the SDS Redesign Project.

The input for the formal verification tools was automatically generated from the word
documents for the requirements (SRS), design (SDD) and verification (DVR) that
were used by all project personnel.

Roughly 70% of the over 200 functional blocks from the software designs of the Re-
design Project were formally verified using the SDV Tool together with the auto-
mated theorem prover PVS. The remainder of the verification blocks that did not in-
volve straight forward block comparisons, requiring additional reasoning about the
program’s main execution thread and timing constraints, were handled by rigorous
manual arguments.

Figure 6: Tool Support for Verification of Darlington SDS Redesign.

Future of Formal Verification

Many times formal methods have been “bolted onto the side” of an existing S/W de-
velopment process or applied to a project after the product is developed by having a
“Formal Methods Guru” come and create another (formal) version of the require-
ments and/or design. The short term result is that errors are found and papers are
written showing how good the formal methods were. Long term, the formal methods
guru moves on to another source of publications, the “formal” version of documents
is not understood by anyone and rots away into oblivion. It is hard enough to afforda-
bly maintain and keep one set of documents in sync with the code, let alone two.

The solution to this problem is to have one set of documents that are formal and
readable by domain experts, easily maintained and have tool support that integrates
with the company’s existing software process. In the Darlington Redesign Project we

232 Formal Verification of Nuclear Systems: Past, Present, and Future

avoided the “Two Model Trap” by successfully integrating tabular methods with tool
support into the forward going software development process.

While the Darlington Redesign Project was a success, we only scratched the surface
of what could be done. The really difficult stuff such as verification of real time prop-
erties, tolerances, sequential behavior, and numerical analysis results for fixed point
arithmetic, were done manually. It was not in the budget to develop tools for all these
verification aspects and the regulator did not require it. At the time that was probably
the right decision but times have changed and there are now options for automatically
verifying many of these properties.

The tool qualification problem

Everything that was done using the formal methods tools on the Darlington Redesign
Project was also done manually too! Tools are great, but they do not buy you much
credit with the regulator if they can be a single point of failure that can cause an error
to go undetected. If this is the case, standards often will require the tool to be quali-
fied to the level of the system they are being used on. This has implications for the
current Model Driven Development methodologies being pushed for critical control
systems since it is highly unlikely that we will be seeing a formally verified Model
Driven Development framework like Matlab/Simulink any time soon.

The bad news is that you will, in all likelihood, need two different tools in order to
avoid having to do verification manually, because “demonstrating soundness of the
tools” will likely be difficult or impossible. The good news is that it is not as hard as
you might think to knock the tool qualification requirements down a level by doing
the same thing with two different tools. There is often more than one way to get a
formal verification result. Domain Specific Languages (DSLs) can be used to gener-
ate code for combinations of theorem provers, SMT solvers, and model checkers.
This has the added benefit of helping avoid vendor lock-in in verification tools. In
order to develop a successful formal verification process integrated into the forward
going software development process, consideration must be given to tool qualifica-
tion requirements and how verification tasks might be performed in more than one
way when you are selecting your tools and designing your development process.

Questions and Some Answers from the Darlington Experience

If tools perform automated verification in the forward process, do we really need an
independent Verification team?

While the results of formal verification can be re-run and the verification tools are
free from expectations of a human, the input created for the tools and the proofs
themselves may require human input. Any software process that attempts to eliminate

 Mark Lawford and Alan Wassyng

233

an independent verification team will have to eliminate any potential sources of de-
veloper expectations affecting the results.

Do I still need to test if I am doing formal verification?

Yes. Do not sell formal verification as a way to reduce testing, it should not. Formal
verification is done on models of the system. Testing is done on the real system.
However, formal verification tools can help generate test cases, e.g., an SMT solver
can be used to generate tests for all cells of a table, model checkers can be used to
generate longer test sequences with specific properties and the formal models can be
used as oracles since many verification tools have the ability to execute subsets of
their specification language. Thus formal methods can certainly help reduce the cost
of testing, but they should not supplant it.

How do Formal Verification & Certification relate?

Certifying (licensing, regulatory) authorities typically audit - be it process or product
based, by looking at samples or checking parts of the work. For example, the regula-
tor on the Darlington Redesign Project (the Atomic Energy Control Board - now the
Canadian Nuclear Safety Commission) audited the verification results by checking
samples of the verification work – after agreeing, in principle, to the software devel-
opment process rigorously documented by Ontario Hydro. Interestingly though,
automated tools let you “audit everything” relatively easily just by rerunning all the
tools. Further, certification of software involves much more (and sometimes less) than
formal verification.

Lessons Learned

There are a number of lessons learned from the Darlington SDS Redesign Project that
we need to consider.

1. Mathematically based requirements were a crucial first step. If we do not
formalize the requirements, we cannot perform mathematical verifications.
In the Darlington case we were not forced to do this by the regulator, but it
certainly helps with certification. Clearly it is better if the formalization is
done as part of the main line forward going process.

2. In selecting a formal method, making sure that the formal specifications are
understandable by domain experts should be the first priority. The domain
experts have to be able to read and understand all the details of the require-
ments. Standards prescribing formal methods typically do not require read-
ability by domain experts, but it certainly helps with certification and in-
creases the likelihood that the documents will be used.

234 Formal Verification of Nuclear Systems: Past, Present, and Future

3. Just as automated testing makes regression testing less time consuming and
much more beneficial, formal methods tools that can be run automatically
can make “regression verification” possible. On the Darlington Redesign
Project, custom tools were developed to automate rerunning all of the block
verification proofs in the Systematic Design Verification. These proofs
could be re-run over-night any time the Requirements, Design or Verifica-
tion documents changed - no matter how small or large the change. A sum-
mary of where there were broken (failed) proofs quickly highlighted the sig-
nificant changes in the system.

Future research needs to consider guaranteeing semantic consistency between formal
models for different provers/analysis tools so that multiple verification tools can be
used for each proof obligation to eliminate the need for manual repetition of tool sup-
ported work to satisfy regulatory requirements. With the increasing use of model
driven development, we also need to be concerned about the semantics of formal
models used for V&V and how they compare to the semantics of the engineering
modeling tools (e.g. Matlab/Simulink, MapleSim, etc).

Notes:

1 David Lorge Parnas and Jan Madey, “Functional Documents for Computer Systems,” Sci-

ence of Computer Programming 25:1 (1995): 41–61.
2 Alan Wassyng and Mark Lawford, “Lessons Learned from a Successful Implementation of

Formal Methods in an Industrial Project,” FME 2003: International Symposium of Formal
Methods Europe Proceedings (Pisa, Italy), Lecture Notes in Computer Science 2805
(Springer, August 2003), pp. 133–153.

3 Parnas and Madey, “Functional Documents for Computer Systems.”
4 Paul Joannou, et al., Standard for Software Engineering of Safety Critical Software,

CANDU Computer Systems Engineering Centre of Excellence Standard CE-1001-STD
Rev. 1, January 1995.

5 Mark Lawford, Jeff McDougall, Peter Froebel, and Greg Moum, “Practical Application of
Functional and Relational Methods for the Specification and Verification of Safety Critical
Software,” Proceedings Algebraic Methodology and Software Technology, 8th International

 Mark Lawford and Alan Wassyng

235

Conference, AMAST 2000, Iowa City, Iowa, USA, May 2000, Lecture Notes in Computer
Science 1816 (Springer, 2000), 73–88.

6 Karen L. Heninger, “Specifying Software Requirements for Complex Systems: New Tech-
niques and Their Applications,” IEEE Transactions on Software Engineering 6:1 (January
1980): 2–13.

7 Wassyng and Lawford, “Lessons learned.”
8 Lawford, et al., “Practical application.”
9 Greg Moum, “Procedure for the Systematic Design Verification of Safety Critical Soft-

ware,” CANDU Computer Systems Engineering Centre of Excellence Procedure CE-1003-
PROC Rev. 1, December 1997.

MARK LAFWORD is an Associate Professor in the Department of Computing and Software
at McMaster University in Hamilton, Ontario, Canada where he helped develop the Software
Engineering and Mechatronics Engineering programs. He received his Ph.D. degree in electri-
cal engineering at the University of Toronto in 1997. From 1997 to 1998, he was with Ontario
Hydro as a consultant on the Darlington Nuclear Generating Station Shutdown Systems Re-
design Project, where he was a co-recipient of an Ontario Hydro New Technology Award. His
research interests include software certification, formal methods and real-time systems.

ALAN WASSYNG is the Director of the McMaster Centre for Software Certification. For
thirteen years he consulted for Ontario Hydro (OH). After leading one of the teams that devel-
oped “program function tables” during the original licensing of the Darlington Nuclear Gener-
ating Station, he was fortunate to continue his involvement as one of the primary people in-
volved in the creation of the methodology used by OH for the development of safety-critical
software, and helped develop the redesigned software for the Darlington Shutdown Systems.
In 1995 he was a co-recipient of an Ontario Hydro New Technology Award for Development
of Safety-Critical Software Engineering Technology. His research is in the development and
certification of safety-critical software systems.

	Introduction
	What is a Shutdown System (SDS)?
	Overview of the Darlington Redesign Project
	Tabular Expressions - A Useable Rigorous Method
	Tabular Expressions Semantics

	Formal Verification Used in “Certifying” Darlington
	“Vertical” Decomposition of Proof Obligations
	“Horizontal” Decomposition of Proof Obligations

	Future of Formal Verification
	The tool qualification problem
	Questions and Some Answers from the Darlington Experience
	If tools perform automated verification in the forward process, do we really need an independent Verification team?
	Do I still need to test if I am doing formal verification?
	How do Formal Verification & Certification relate?

	Lessons Learned

	Notes

