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FORMAL VERIFICATION OF NUCLEAR SYSTEMS: 
PAST, PRESENT, AND FUTURE 
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Abstract: In this paper we review the Systematic Design Verification Process used 
on the computer controlled shutdown systems of the Darlington Nuclear Generating 
Station Shutdown Systems. The Software Requirements Specification (SRS) made 
extensive use of tabular expressions to document the requirements as did the Soft-
ware Design Description (SDD). Systematic Design Verification was then per-
formed based upon the 4-Variable Model to verify that the design was correct with 
respect to its requirements. Custom tools were developed to process the SRS and 
SDD documents to produce “block theorems” for the PVS theorem prover that were 
used to verify the majority of the functional requirements. We discuss how the 
formal methods were integrated into the forward going software development proc-
ess and techniques that were used to manage the complexity of the verification task. 
We offer some lessons learned in the process and discuss the future of formal veri-
fication for nuclear systems. 

Keywords: Formal methods, verification, software development process, software 
tools, safety-critical software. 

Introduction 

The two Shutdown Systems (SDS1 and SDS2) for the Darlington Nuclear Generating 
Station in Ontario, Canada, were the first computer controlled shutdown systems in 
Canada. This paper is not about the original Darlington Project, when Ontario Hydro 
was forced to reverse engineer tabular specifications for requirements and the code in 
order to get regulatory approval 1 to operate the Darlington station. People often cite 
the difficulty and cost of the original verification project when they want to dismiss 
tabular methods. No other formal method applied after the fact would have fared any 
better. Simply put, trying to apply formal methods after the fact to software that has 
been developed without formal verification in mind, is bound to be a difficult task re-
gardless of the formal techniques employed. 

This paper is about the Redesign Project, performed in the 1990’s, in which formal 
techniques were integrated in the forward development process.2 One of the essential 
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components of the process was a Systematic Design Verification, conducted on each 
of the redesigned shutdown systems, SDS1 and SDS2. For each SDS, the Software 
Requirements Specification (SRS) made extensive use of tabular expressions to 
document the requirements as did the Software Design Descriptions (SDD). The 
Systematic Design Verification was based upon Parnas and Madey’s 4-Variable 
Model 3 and was used to verify that the design was correct with respect to its require-
ments. Custom tools were developed to process the SRS and SDD documents to pro-
duce “block theorems” for the PVS theorem prover that were used to verify the ma-
jority of the functional requirements. (To complete the picture, a table-based verifi-
cation process was also used to prove compliance of the code with respect to its de-
sign.) 

What is a Shutdown System (SDS)? 

A Shutdown System is a watchdog system that monitors reactor system parameters 
and shuts down (trips) the reactor if it observes “bad” behavior. The process control 
is performed by a separate Digital Control Computer (DCC) since it is not as critical. 
This design follows the principle of separation of safety and control. Each SDS con-
sists of three computer systems (called “channels”), and the two SDS are diverse with 
respect to their hardware, programming languages, teams, and method of achieving a 
plant shutdown. The safety-critical component of each channel is a computer known 
as the “Trip Computer.” All three Trip Computers in each SDS are identical. 

Formal verification of each Trip Computer design was employed in the Darlington 
Redesign Project for a number of reasons. Unnecessary trips incur significant costs as 
coal or gas fired power plants have to be brought on line to meet demand. Without 
formal verification it can be difficult to make modifications and then get regulatory 
approval for the changes since even a relatively minor change results in another ex-
tensive and expensive round of testing and review. Failure of the system could have 
catastrophic consequences, but testing simply cannot cover all possible input cases 
for the system and there is simply too much detail for a person to catch everything by 
review alone. 

Overview of the Darlington Redesign Project 

The block diagram showing the overall structure of the SDS1 Trip Computer is 
shown in Figure 1. The system had 84 monitored variables (inputs) and 27 controlled 
variables (outputs). The software design consisted of 60 modules with 280 access 
programs implemented by 40,000 lines of code, including comments. Approximately 
33,000 lines of code were written in FORTRAN and the remaining 7,000 were as-
sembler. 
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Figure 1: Block Diagram of the SDS1 Trip Computer. 
 
The CANDU Computer Systems Engineering Centre for Excellence Standard for 
Software Engineering of Safety Critical Software first fundamental principle states: 
“The required behavior of the software shall be documented using mathematical 
functions in a notation which has well defined syntax and semantics.” 4 

Functional specifications were used wherever possible for the following reasons: 
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Determinism: It is desirable to have unambiguous descriptions of safety critical be-
havior; Clarity: It is easier for domain experts and developers to understand func-
tional requirements; Preference: Engineers prefer to specify precise behavior and ap-
peal to tolerances when necessary; Sufficient: Functional methods are often sufficient 
and are easily automated. 

Tolerances were taken into account on the system inputs and outputs where neces-
sary, effectively making the specifications relational.5 With mathematical require-
ments in place, it becomes possible to formally verify that the system design meets 
the requirements as a part of the development process. 

Figure 2 shows the idealized development process together with the tools used in 
producing the documentation and software for the Darlington SDS Redesign. Part of 
the assurance case was implicitly embodied in the standard employed in the SDS Re-
design, as follows: 

1. The requirements are specified mathematically and checked for complete-
ness and consistency. A hazards analysis is required to document risks and 
especially to identify sources of single point failures. These hazards have to 
be mitigated in the specified requirements. 

 

Figure 2: Idealized Development Process.  
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2. Compliance between requirements and software design is mathematically 
verified. 

3. Compliance between the code and software design is verified through both 
mathematical verification and testing. Compliance between code and re-
quirements is shown explicitly through testing. However, there is an implicit 
argument of compliance between code and requirements through the transi-
tive closure of the mathematical verification – code to design, and design to 
requirements. 

Some of the major benefits of using tool supported formal methods include: 

 Independent checks which are unaffected by the verifier’s expectations; 

 Domain coverage through the use of tools that can often be used to check all 
input cases – something that is not always possible or practical with testing; 

 Detection of implicit assumptions and ambiguous/inconsistent 
specifications; 

 Additional capabilities such as the generation of counter-examples for de-
bugging, type checking, verifying whole classes of systems, etc. 

While these benefits are significant, one has to be careful to choose a formal method 
that results in specifications that are readable by domain experts and that can provide 
tool support that is integrated into the forward going software development process. 

Tabular Expressions - A Useable Rigorous Method 

For the redesign, the Software Requirements Specification (SRS) made extensive use 
of tabular expressions to document the requirements as did the Software Design De-
scription (SDD). Ontario Hydro had some experience with tabular expressions since 
they were used to obtain the licence to operate Darlington in the original verification 
effort. Tabular methods are well suited to the documentation of the Trip Computer 
control functions that typically partition the input domain into discrete modes or op-
erating regions. They were found to be readable by domain engineers, operators, test-
ers and developers and there had been other success stories using tabular methods, 
such as the U.S. Navy’s A-7 aircraft.6 On the Darlington Redesign Project, tabular 
methods eventually showed significant benefits when used in a process with inte-
grated tool support. 

Tabular Expressions Semantics 
Consider the following example table. Here each ci is a Boolean expression, when ci 
is true f returns ei. 
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In order for the table to be proper, it must satisfy two properties: 

1) Disjointness: i≠j → (ci ∧ cj ↔٣); 

2) Completeness: (c1 ∨ c2 ∨… ∨ cn) ↔١. 

The following example illustrates why tables are effective. 

 

The logical expression on the left is equivalent to the tabular expression on the right, 
but generally people find the table much easier to understand. 

Formal Verification Used in “Certifying” Darlington 

This section provides an overview of the Systematic Design Verification (SDV) pro-
cedure and corresponding tool support employed on the SDS Redesign Project. We 
highlight elements of the process, such as the decomposition of proof obligations, that 
facilitate tool support and reduce the effort required to perform rigorous design veri-
fication, including creation and maintenance of the process documents. In particular, 
we concentrate on the verification of functional properties utilizing tabular notation. 
Details of the software process and notation,7 the decomposition of the proof obliga-
tions 8 and the complete procedure 9 can be found in the provided references. 

The objective of SDV is to verify, using mathematical techniques or rigorous argu-
ments, that the behavior of every output defined in the SDD (the design document) is 
in compliance with the requirements for the behavior of that output as specified in the 
SRS (the requirements document). It is based upon a specialization of the 4-variable 
model that verifies the functional equivalence of the SRS and SDD by comparing 
their respective one step transition functions. The resulting proof obligation in this 
special case is: 

REQ = OUT ○ SOF ○ IN    (1) 

and is illustrated in the commutative diagram of Figure 3. Here REQ and SOF are the 
one step transition functions of the requirements and design respectively. 

“Vertical” Decomposition of Proof Obligations 

To facilitate verification and good design, we decompose the proof obligation (3) 
“vertically” taking into account hardware hiding modules (see Figure 4). By creating  
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Figure 3: 4-Variable Model of Parnas & Madey.  
 
“pseudo” representations of the monitored and controlled quantities within the soft-
ware, we allow for a more direct implementation of the requirements within the soft-
ware, resulting in the decomposed proof obligations: 

AbstC ○ REQ = SOFreq ○ AbstM   (2) 

AbstM = SOFin ○ IN    (3) 

idC = OUT ○ SOFout ○ AbstC   (4) 

Here (3) and (4) represent verification of hardware hiding modules, Mp is the pseudo-
monitored variables and Cp is the pseudo-controlled variables. 

Consider the following example of a hardware hiding module corresponding to the 
left side triangle of the commutative diagram in Figure 4. The temperature of the pri-
mary heat transport system which belongs to M might have a value of 500.3 Kelvin. 
A temperature sensor converts this to 3.4 volts which is measure by a 12-bit A/D 
which maps this via (part of) IN in a parameter with a value of 2785 counts in I. A 
hardware hiding module might then process this input corresponding to map SOFin, 
producing a value of 500 Kelvin in the appropriate temperature variable of the soft-
ware state space Mp. 

Note the “wrong way” AbstC arrow - this is used to reduce the number of required ab-
straction functions since the output of one block comparison may be the input to  

 

Figure 4: “Vertical” decomposition using Hardware Hiding. 
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another. This can effectively reduce by up to 1⁄2 the number of abstraction functions 
that the verifier is required to supply as inputs to the tools. The proof obligation (4) 
precludes the possibility of trivial implementations. While the invertibility of OUT 
implied by (4) is not possible in all situations, it was applicable to the majority of the 
safety critical requirements on Darlington. 

To make the proof obligations manageable, further “vertical” decomposition of the 
proof obligations can be obtained by isolating outputs. In effect, we project C onto a 
single output and then restrict REQ to the relevant subset of M. The next simplifying 
step we make is a “horizontal” decomposition based upon dataflow. 

“Horizontal” Decomposition of Proof Obligations 

With the aid of “supplementary functions0” the main block comparison proof (2) can 
be sequentially decomposed as shown in Figure 5 into a sequence of simpler obliga-
tions of the form: 

Abstvi ○ REQi = SOFi ○ AbstVi-1   (5) 

The cost of this decomposition is that the verifier must provide a cross reference be-
tween internal quantities in the requirements and design in the form of the abstraction 
functions: AbstVi : Vi → Vip. Now we see the benefit of “wrong way” arrows. The 
same AbstVi can be used on the output of one block and then the input of the next 
block. We note that we only need to check invertibility of AbstC to satisfy (4) and not 
these internal abstraction functions. 

Some very simple design rules made the mathematical verification of the code against 
the design much more tractable. For example, we use a Get, Process, Set heuristic so 
that if there is a dependency upon the value of an asynchronous variable (e.g. a 
timer), it is read when “getting” all the other inputs and its stored value is then used 
throughout the module. Without this heuristic it may be impossible to formally verify 
blocks involving asynchronous variables. 

 
Figure 5: Horizontal decomposition of (2) into verification blocks. 
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A formal method should be tightly integrated with the software development process, 
i.e. it is directly applied to project documents used by all parties as part of the for-
ward development process. This includes requiring integrated tool support for the 
formal methods in order to make them practical. Figure 6 shows the custom tools de-
veloped to support the SDS Redesign Project. 

The input for the formal verification tools was automatically generated from the word 
documents for the requirements (SRS), design (SDD) and verification (DVR) that 
were used by all project personnel. 

Roughly 70% of the over 200 functional blocks from the software designs of the Re-
design Project were formally verified using the SDV Tool together with the auto-
mated theorem prover PVS. The remainder of the verification blocks that did not in-
volve straight forward block comparisons, requiring additional reasoning about the 
program’s main execution thread and timing constraints, were handled by rigorous 
manual arguments. 

 

Figure 6: Tool Support for Verification of Darlington SDS Redesign.  

Future of Formal Verification 

Many times formal methods have been “bolted onto the side” of an existing S/W de-
velopment process or applied to a project after the product is developed by having a 
“Formal Methods Guru” come and create another (formal) version of the require-
ments and/or design. The short term result is that errors are found and papers are 
written showing how good the formal methods were. Long term, the formal methods 
guru moves on to another source of publications, the “formal” version of documents 
is not understood by anyone and rots away into oblivion. It is hard enough to afforda-
bly maintain and keep one set of documents in sync with the code, let alone two. 

The solution to this problem is to have one set of documents that are formal and 
readable by domain experts, easily maintained and have tool support that integrates 
with the company’s existing software process. In the Darlington Redesign Project we 
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avoided the “Two Model Trap” by successfully integrating tabular methods with tool 
support into the forward going software development process. 

While the Darlington Redesign Project was a success, we only scratched the surface 
of what could be done. The really difficult stuff such as verification of real time prop-
erties, tolerances, sequential behavior, and numerical analysis results for fixed point 
arithmetic, were done manually. It was not in the budget to develop tools for all these 
verification aspects and the regulator did not require it. At the time that was probably 
the right decision but times have changed and there are now options for automatically 
verifying many of these properties. 

The tool qualification problem 

Everything that was done using the formal methods tools on the Darlington Redesign 
Project was also done manually too! Tools are great, but they do not buy you much 
credit with the regulator if they can be a single point of failure that can cause an error 
to go undetected. If this is the case, standards often will require the tool to be quali-
fied to the level of the system they are being used on. This has implications for the 
current Model Driven Development methodologies being pushed for critical control 
systems since it is highly unlikely that we will be seeing a formally verified Model 
Driven Development framework like Matlab/Simulink any time soon. 

The bad news is that you will, in all likelihood, need two different tools in order to 
avoid having to do verification manually, because “demonstrating soundness of the 
tools” will likely be difficult or impossible. The good news is that it is not as hard as 
you might think to knock the tool qualification requirements down a level by doing 
the same thing with two different tools. There is often more than one way to get a 
formal verification result. Domain Specific Languages (DSLs) can be used to gener-
ate code for combinations of theorem provers, SMT solvers, and model checkers. 
This has the added benefit of helping avoid vendor lock-in in verification tools. In 
order to develop a successful formal verification process integrated into the forward 
going software development process, consideration must be given to tool qualifica-
tion requirements and how verification tasks might be performed in more than one 
way when you are selecting your tools and designing your development process. 

Questions and Some Answers from the Darlington Experience 

If tools perform automated verification in the forward process, do we really need an 
independent Verification team? 

While the results of formal verification can be re-run and the verification tools are 
free from expectations of a human, the input created for the tools and the proofs 
themselves may require human input. Any software process that attempts to eliminate 
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an independent verification team will have to eliminate any potential sources of de-
veloper expectations affecting the results. 

Do I still need to test if I am doing formal verification? 

Yes. Do not sell formal verification as a way to reduce testing, it should not. Formal 
verification is done on models of the system. Testing is done on the real system. 
However, formal verification tools can help generate test cases, e.g., an SMT solver 
can be used to generate tests for all cells of a table, model checkers can be used to 
generate longer test sequences with specific properties and the formal models can be 
used as oracles since many verification tools have the ability to execute subsets of 
their specification language. Thus formal methods can certainly help reduce the cost 
of testing, but they should not supplant it. 

How do Formal Verification & Certification relate? 

Certifying (licensing, regulatory) authorities typically audit - be it process or product 
based, by looking at samples or checking parts of the work. For example, the regula-
tor on the Darlington Redesign Project (the Atomic Energy Control Board - now the 
Canadian Nuclear Safety Commission) audited the verification results by checking 
samples of the verification work – after agreeing, in principle, to the software devel-
opment process rigorously documented by Ontario Hydro. Interestingly though, 
automated tools let you “audit everything” relatively easily just by rerunning all the 
tools. Further, certification of software involves much more (and sometimes less) than 
formal verification. 

Lessons Learned 

There are a number of lessons learned from the Darlington SDS Redesign Project that 
we need to consider. 

1. Mathematically based requirements were a crucial first step. If we do not 
formalize the requirements, we cannot perform mathematical verifications. 
In the Darlington case we were not forced to do this by the regulator, but it 
certainly helps with certification. Clearly it is better if the formalization is 
done as part of the main line forward going process. 

2. In selecting a formal method, making sure that the formal specifications are 
understandable by domain experts should be the first priority. The domain 
experts have to be able to read and understand all the details of the require-
ments. Standards prescribing formal methods typically do not require read-
ability by domain experts, but it certainly helps with certification and in-
creases the likelihood that the documents will be used. 
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3. Just as automated testing makes regression testing less time consuming and 
much more beneficial, formal methods tools that can be run automatically 
can make “regression verification” possible. On the Darlington Redesign 
Project, custom tools were developed to automate rerunning all of the block 
verification proofs in the Systematic Design Verification. These proofs 
could be re-run over-night any time the Requirements, Design or Verifica-
tion documents changed - no matter how small or large the change. A sum-
mary of where there were broken (failed) proofs quickly highlighted the sig-
nificant changes in the system. 

Future research needs to consider guaranteeing semantic consistency between formal 
models for different provers/analysis tools so that multiple verification tools can be 
used for each proof obligation to eliminate the need for manual repetition of tool sup-
ported work to satisfy regulatory requirements. With the increasing use of model 
driven development, we also need to be concerned about the semantics of formal 
models used for V&V and how they compare to the semantics of the engineering 
modeling tools (e.g. Matlab/Simulink, MapleSim, etc). 
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