
Published by ProCon Ltd., www.procon.bg, under Creative Commons 4.0 Attribution-

NonCommercal-ShareAlike International license (CC BY-NC-SA 4.0).

Information & Security: An International Journal

Baicheva & Dimitrov, vol.37, 2017, 29-34 https://doi.org/10.11610/isij.3702

A SOFTWARE TOOL ‘ASR’

FOR A POSTERIORI CRYPTANALYSIS ON

PUBLIC KEYS GENERATED WITH ‘RSA’

Tsonka BAICHEVA and Miroslav DIMITROV

Abstract: The asymmetric cryptosystem RSA is one of the first practical public-key

cryptosystems, widely used for secure data transmission. The key generation of the

RSA algorithm relies on specifically chosen numbers. Through the years, as the variety

of attacks on RSA increased, plenty of recommendations and strategies for keys

generation were published, for example NIST.FIPS.186-4.1 Following the good

practices, the regular users, companies or governments, can bootstrap their

implementation of key generation software (a priori analysis). From the perspective of

the other side of the communication channel, the key generation process and the keys

themselves are a form of a “black box.” Furthermore, most of the recommendations

and good practices published online don’t reference the reasons/attacks, which can

exploit the specific wrongly chosen parameter. An automatic a posteriori cryptanalysis

tool will link each recommendation with an existing attack, giving the other side of the

communication channel a tool to detect unsafely (including weakened by purpose)

generated keys.

Keywords: asymmetric cryptosystems, RSA, cryptanalysis, public keys, software tool

Introduction

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman 2 created one of the first

asymmetric cryptosystems “RSA” (abbreviation of their family names). It is currently

one of the most widely used cryptosystems for providing security over insecure

channels.

The increasing demands of modern digital society, as well as the rising number of

computer devices, network devices, IoT devices, etc, are rapidly increasing the

sources of communication over the Internet. Each communication flow, which holds

sensitive information, should be independently protected by providing confidentiality

and integrity.6 Unfortunately, an error in the implementation of a cryptographic

algorithm can lead to critical incidents or sensitive information leaks.5,7 In cases when

 ASR for a posteriori Cryptanalysis on Public Keys Generated with ‘RSA’ 30

providing security over insecure channels is a must, such as the Internet, the

symmetric cryptographic algorithm's secrets (configurations, keys, etc.) are heavily

depended on the asymmetric algorithm.8

The tool for a posteriori automatic cryptanalysis “ASR” on public keys (and

messages) generated with RSA will provide a compact library for further testing the

built-in parameters, testing various techniques to extract the plaintext from an

intercepted message encrypted with RSA and a rich field for testing new and

combined attacks such as those discussed by Dan Boneh.3

The “ASR” tool can be logically divided into two layers – inner and outer. The

diagram of the outer layer is displayed in “Figure 1”, while the diagram of the inner

layer is displayed in “Figure 2.” The following sections will briefly describe the logic

flow of the software tool.

ASR – Outer Layer

Figure 1 represents the other layer of the “ASR” tool. Its components and main

functionalities are further discussed below.

Figure 1: ASR Outer Layer.

Tsonka Baicheva and Miroslav Dimitrov 31

The other layer components are, as follows:

 GUI: the graphical user-interface is going to be built by Python. It will be

highly configurable, providing the user with many configuration options.

 RSA Crawlers: this set of modules is populating the SQL RSA Database. It

will have an option to be constantly running in the background, collecting

public keys from different sources - websites, digital signatures, network

devices, IoT devices, etc. It will be further divided into sub-modules and

parsers. Again, it will be highly configurable.

 SQL RSA Messages Pool: This database will be further logically divided by

two different scenarios - set of different messages, encrypted with different

public keys, or set of different public keys, which encrypted the same

message.

 Probes' Timers: If the user launches some of the factorizations algorithms 4,11

on a specific modulus and the public key is generated following the

recommendations, it is highly unlikely the algorithm to produce an answer

(factors) within a reasonable timeline. This demands a module, which

automatically bounds the running time of the specific factorization

algorithm.

 ASR Core: this module encapsulates all the libraries and attacks

implemented in the ASR tool. The literature provides examples of various

attack scenarios.9, 10, 12

 Low Entropy Detector: Having a large populated SQL RSA Database, the

module can initiate a common modulus attack. It will support an option to

use simple GCD techniques, as well as an option of efficiently computing

all-pairs GCD.7

 Local Repositories: The user can supply the encrypted messages manually.

ASR – Inner Layer

The variety of the most popular attacks on RSA, which the ASR tool will implement,

depends on various constructions, abstract mathematical structures and complex

algorithms. In “Figure 2,” the inner relationships of the ASR code are displayed,

linking each attack with the desired features.

 ASR for a posteriori Cryptanalysis on Public Keys Generated with ‘RSA’ 32

Figure 2: ASR Inner Layer.

Tsonka Baicheva and Miroslav Dimitrov 33

Conclusion

The ASR software tool will be dynamically extended – new attack vectors

can be easily attached to the project and the SQL RSA certificates' database

will be automatically updated. The latter can be defined as a real-case

snapshot of the current RSA certificates in use.

The documentation of the project will be exhaustive, having the ambitious

goal to link every good practice or recommendation to an implemented attack

within the ASR software tool.

It can be used by the developers of cryptographic applications from the

private companies and the government sector as well as from any end-user

willing to test to which extent its private data are adequately protected.

Endnotes

1 N.I.o.S.a.T. Information Technology Laboratory, “FIPS PUB 186-4 Digital

Signature Standard (DSS),” Federal Information Processing Standards, 2013.

2 R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Communications of the ACM 21,

no. 2 (Feb. 1978): 120–126.

3 Dan Boneh, “Twenty Years of Attacks on the RSA Cryptosystem,” Notices of

the AMS 46 (2002).

4 Divesh Aggarwal and Ueli Maurer, “Breaking RSA Generically Is Equivalent to

Factoring,” in: A. Joux A, ed., Advances in Cryptology - EUROCRYPT 2009.

Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin, Heidelberg,

2009), https://doi.org/10.1007/978-3-642-01001-9_2.

5 Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia

Heninger, Tanja Lange, and Nicko van Someren, “Factoring RSA keys from

certified smart cards: Coppersmith in the wild,” Cryptology ePrint Archive,

Paper 2013/599 (2013).

6 Jonathan Katz and Yehuda Lindell, Introduction to Modern Cryptography (CRC

Press, 2007), 3-4.

7 Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman,

“Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network

Devices,” 21st USENIX Security Symposium, Bellevue, WA, August 8-10, 2012.

8 N. S. Agency, “Commercial National Security Algorithm Suite,” National

Cryptographic Solutions Management Office, 19 August 2015.

9 Daniel J. Bernstein, “How to Find Smooth Parts of Integers,” 2004.

 ASR for a posteriori Cryptanalysis on Public Keys Generated with ‘RSA’ 34

10 Don Coppersmith, “Small Solutions to Polynomial Equations, and Low

Exponent RSA Vulnerabilities,” Journal of Cryptology 10, (1997): 233–260,

https://doi.org/10.1007/s001459900030.

11 J.M. Pollard, “A Monte Carlo method for factorization,” BIT Numerical

Mathematics 15, (1975): 331–334, https://doi.org/10.1007/BF01933667.

12 Abderrahmane Nitaj, “Another Generalization of Wiener’s Attack on RSA,” in

S. Vaudenay, ed., Progress in Cryptology – AFRICACRYPT 2008. AFRICA-

CRYPT 2008. Lecture Notes in Computer Science, vol. 5023 (Berlin, Heidel-

berg: Springer, 2008), 174-190, https://doi.org/10.1007/978-3-540-68164-9_12.

About the Authors

Prof. Tsonka Baicheva obtained her PhD in Informatics in 1998 and her

PhD in Mathematics in 2015, both at the Institute of Mathematics and

Informatics, Bulgarian Academy of Sciences. Since 2012, she is a professor

at the same institute. Her research interests are in Coding Theory, Computer

Communications, and Data Protection. She has published 73 papers in

scientific journals and proceedings of conferences and has 222 citations of

her publications.

Miroslav Dimitrov has just started his PhD at the Bulgarian Academy of

Sciences under the supervision of Prof. Tsonka Baicheva. He has graduated

in Informatics and Information Security (both at Sofia University). His main

research is on cryptanalysis and applications of symmetric and asymmetric

cryptosystems.

