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A B S T R A C T : 

This article investigates the competition for limited attention in a social net-
work with innovation. We consider the case where each piece of information 
has a fitness as proxy of its quality. The higher is the quality, the higher are 
the chances of being transmitted. We measure the relationship between the 
quality of an idea and its likelihood of becoming prevalent at the system level. 
We find that both information overload and limited attention contribute to a 
degradation of the system discriminative power. When trust is incorporated 
into the model and the agents can decide whether or not to accept a meme, 
we show that both lifetime and popularity distributions have broad power-
law tails indicating that only a few memes spread virally through the popula-
tion reproducing perfectly the broad distributions obtained from empirical 
data. 
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Introduction 

The problem of competition for attention has become one of the most thriving 
topics in the field of information diffusion. With millions of people adopting 
online social media as their main source of news, understanding how infor-
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mation propagates is of extreme importance since theses platforms provide the 
perfect breeding ground for the diffusion of low quality in formation such as 
misinformation and fake news.1,2,3,4 In reality, users are exposed to a very large 
number of memes,5 i.e., any piece of transmissible information, and, because 
of the limited attention or limited cognitive capacity,6 they cannot consume all 
the information they are exposed to, and therefore, only a small fraction of 
them will eventually become popular while the vast majority will simple disap-
pear. There are several cases in which such a behavior is observed. Examples of 
such a behaviour including the number of hashtags or URL retweet on Twitter,7 
video views on YouTube,8 citations,9,10,11 among many others.12,13,14,15 Aware of 
this, information producers employ various mechanisms to polish the way they 
present their product to attract most people attention. 

Traditionally, models of information diffusion are based on tools borrowed 
from theoretical epidemiology where susceptible agents became infected by in-
teraction with infected agents and, in spite of their simplicity, they were able to 
reproduce several empirical observations.16,17,18,19,20,21 For example, Weng,22 
Gleeson 23 and Notarmuzi 24 have shown that a very simple model of infor-
mation diffusion can produce a flat-tailed distribution for the popularity of a 
given meme. Such a kind of behaviours was commonly observed in a variety of 
systems that include citations,9,10,11 hashtags and URLs on Twitter,7 videos on 
YouTube,8 among many others.12,13,14,15 Qiu et.al. proposed a diffusion model 
that considers the user’s limited attention and the quality of the information 
being transmitted. The authors showed that there exists a tradeoff between 
discriminative power and diversity. However, in realistic conditions, the model 
predicts that high-quality information has little advantage over low-quality in-
formation.25 Simultaneously, Sreenivasan et.al. 26 proposed a model of infor-
mation cascades on feed-based networks also considering the finite attention, 
innovations and message diffusion. In such a case, the authors estimated the 
branching factor associated with the cascade process for different attention 
spans and different forwarding probabilities. They demonstrated that beyond a 
certain attention span, cascades tend to become viral. Ciampaglia et.al. 27 pro-
posed a model in which memes are selected based on their popularity or quality 
and the authors found that popularity bias hinders average quality when users 
are capable of exploring many items, as well as when they only consider very 
few top items due to scarce attention. They also found that an intermediate 
regime exists in which some popularity bias is good in distinguishing high-quality 
information, but too much can harm the system. More recently, Oliveira et.al. 
investigated the impact of influential nodes on the spreading of information. 
The authors showed that meme’s quality does not guarantee virility, but there 
is a strong correlation between the meme’s success and the influence of the 
agent who introduced it.28 When considering situations where agents with het-
erogeneous criteria of quality. Cisneros-Velarde and coworkers proposed a sim-
ple method for enhancing the spread of high-quality information. Their results 
consist on strategically resorting the information feeds of users that share low-
quality information. Under different settings of types of users, the authors 
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showed that this policy has the best performance on homogeneous agents with 
a good criterion of what constitutes “good information.” Moreover, they found 
that even in the case where agents are either purely malicious or have an op-
posite criterion of what constitutes high-quality information, the policy greatly 
reduces the spread of low quality information.29 Although several works have 
been done trying to address to the crucial importance for the problem of com-
petition for attention, there still a lack of a better understanding of how memes 
behave in on-line social network from the moment they are introduced into the 
system and start to compete for the user’s attention until they are completely 
forgotten. 

The Model and Numerical Results 

We consider an agent-based model inspired by the long tradition of represent-
ing the spread of ideas as an epidemic process where information is passed 
along the edges of a network.30,31,32,33,34 The model consists of a network where 
each agent is equipped with a memory containing   memes organized in a 
“first-in-first-out” manner. Additionally, every meme in the system has a nu-
merical value drawn from an uniform distribution at the moment of its creation 
representing its fitness or quality. Furthermore, new memes are continuously 
introduced into the system in an exogenous way and the rate at which this hap-
pens ultimately determines the amount of diversity in the system in the sense 
that the higher information load  , the harsher the competition. We assume 

that at time = 0t t  the system is in its state of higher diversity where each node 

has   unique memes. At every time step a node i  is selected at random and 
with probability   it introduces a new meme in the system by adding it to the 

top of its memory and sharing it with all its neighbors. On the other hand, with 
probability −1  the selected node chooses a meme from its memory and, 

than, transmits it to all its neighbors. Once all neighbors receive the meme, it is 
placed at the top of their memory, and as a consequence, the last meme in each 
node’s list is removed or forgotten (see Figure 1 for details). Additionally, the 
probability of been selected is given by  
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Figure 1: Illustration of the Meme Diffusion Model. 
(a) At each time step, an agent i  is considered (red). The agent chooses to create a new 
meme with probability   and transmit it to all its neighbors. Otherwise, with probabil-
ity −1 , the agent copies a meme from its memory and transmit it to all its neighbors. 
The probability of selecting a meme is proportional to its fitness. (b) Introduction of 
trust in to the model. The parameter  ij  represents the trust agent i  has on agent j .  
 

The copying mechanism represents the adoption of a meme shared by a con-
nection, as is done, e.g. through tweets on Twitter, shares on Facebook. It is 
worth to mention  =1  corresponds the case where at every time step a new 

meme is introduced. On the other hand, for the case of  = 0 , there is no inno-

vation, and as →t  the number of memes alive tends to one (usually, a meme 
with very high quality). The proposed model allows us to study the process be-
hind the competition for limited attention, how the information load and the 
quality of information affect the chances of a meme to succeed and stay on the 
network for long times. We start by considering the behavior of the diversity, 

D , as a function of time for different network sizes, different values of the in-

formation load   and different values for the attention  . At time = 0t t  the 

system is in a state of higher diversity with N  different memes, where N  is 
the network size and as the competition starts to take place the system con-
verges to a steady state that highly depends on  ,   and the network size. 
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To investigate how the system changes from high to low diversity due to the 

competition, we measure the average system diversity D  of an ensemble of 
initial conditions. First, we evaluate the average over the time for a single reali-
zation and then over an ensemble of initial condition. Thus, we have 

where the index i  corresponds to a sample of an ensemble of realization and 

Z  denotes the number of different realizations and ,i tD  is the number of differ-

ent memes in the system for the sample i  at time t  as shown in Figure 2(a). 
We see from Figure 2(a) three different kinds of behaviors. For short t , the di-
versity remains approximately constant. Then, after a first crossover, it decays 

as a power law and, after a second crossover, D  finally bends to a regime of 
constant plateau for sufficient t . We notice the larger is the network, the longer 
it takes to reach the regime of decay and then to the saturation regime. The 
changeover from the initial plateau to the decay and from decaying to satura-

tion are marked by a crossover time xt  corresponding to the intersection be-

tween the lines of the constant plateau and the decaying power law for the first 
crossover or the intersection between the lines of the decaying power law and 
the saturation for the second crossover. It must be emphasized that different 

values of the parameters  ,   and N  generate different behaviors D . Fur-

thermore, the behavior shown in Figure 2 is typical from systems exhibiting scal-
ing properties.35,36,37,38 In this work, we will investigate the dynamics of the sys-
tems at the steady state. Once the system reaches such a state, we performed 
measurements to determine the success of a meme following them from the 
moment they were first shared until they completely disappeared from the net-
work, recording their quality, popularity, lifetime. Here, we define popularity as 
the number of times a given meme is selected to be transmitted and lifetime is 
the time passed between the meme’s creation and its extinction. The results 
presented here were obtained by using scale-free networks 39 with 1000 nodes 
and average degree 20. During each simulation, we monitored 1,000,000 
memes that were introduced and forgotten after the system reached the steady 
state. We ran each simulation 4 times, so that our analyses took 4,000,000 
memes into consideration for each combination of the parameters studied. 
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Figure 2: (a) Behavior of the average system’s diversity as a function of time for 
different attention and information load 


. (b) Behavior of the average system’s 

quality as a function of the attention   and information load 


. 

 
The dependence of the average system quality on the attention α and infor-

mation load   is shown in Figure 2(b). We observe that by increasing the infor-

mation load, users have less time to distinguish between low and high quality 
information in their attention list, and as a consequence the average system’s 
quality decreases. The situation in which  =1  represents the case in which a 

new meme is introduced every time step and →0.5Q  since all memes are 

drawn at random from an uniform distribution between 0 and 1. Next, we in-
vestigate the behavior of two measures of meme’s success, namely, popularity 
and lifetime. The distribution of meme popularity, shown in Figure 3(a), highly 
depends on the information load  . For high values  , the distribution is ex-

ponentially narrow and no memes go viral. As the information load becomes 
lighter (   0.2 ), our model reproduces the broad distribution from the empir-

ical data, indicating that a few memes spread virally through the population. In 
the absence of quality, we would expect a power-law distribution of popularity 

− 1.5( )P p p . However, fitting reveals a larger exponent  1.94  which is con-

sistent with a model of a branching process with uniform fitness, which predicts 
an exponent  2 . The behavior of the meme’s lifetime is shown in Figure 3(b). 

Observe that the lifetime exhibits a peak that corresponds to the average time 
needed for the memes that are not selected to disappear from the network and, 
as the information load decreases, more long-lived viral memes appear in the 
network. 

Furthermore, in a system in which people rely to consume information about 
daily events, two quantities are desirable, namely, diversity of information and 
discriminative power. Diversity of information, because we want to expose the 
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Figure 3: (a) Distribution (probability density function) of (a)-(c) meme’s popularity and 
(b)-(d) meme’s lifetime for different values of   and  . We compared the model pre-
dictions with an empirical distribution obtained by counting the number of occurrences 
of hashtags and their lifetime from a sample of public tweets. This empirical popularity 
and lifetime were distributed according to a power-law distribution. 

 
users to a wide range of point of views. At the same time, it is desirable to have 
a system that is able to distinguish between low- and high-quality information, 
or information and misinformation, or even real news and fake news. To meas-
ure the amount of diversity in the system at the steady state, we use the en-

tropy = − ( )log ( )
m

H P m P m , where ( )P m  is the portion of attention received 

by meme m , i.e., the fraction of messages with m  across all of the user feeds. 
The sum runs over all memes present at a given time and is averaged over a 
long period after stationarity has been achieved. The minimum entropy is zero, 
when all nodes have the same meme (  = 0 ). However, the maximum entropy 

will depend on the control parameters. To discount this dependence, we meas-
ure diversity using the normalized entropy  =/ ( 1)H H . Figure 4(a) shows that 

with this normalization, the diversity does not depend in a significant way on 
the attention  . However, the diversity increases with information load and is 
maximized for high  . 
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Finally, we can summarize the dependency between the quality of memes 
and their success in a single discriminative power measure by looking at the 
correlation between quality and popularity. Since the two quantities are not 
normally distributed, we measure the normalized mutual information (NMI) be-
tween the two variables. High normalized mutual information ( 1NMI ) indi-
cates that fitter memes are more likely to win, granting the system discrimina-
tive power; in the extreme case where =1NMI , the two rankings are com-
pletely concordant. Small NMI ( 0NMI ) signifies a lack of quality discrimina-
tion by the network. Figure 4(b) shows that network discriminative power de-
grades both with higher information load and with more limited attention. 

So far, we have assumed that every user will adopt any kind of information 
received from their peers. However, in real life situations there are several char-
acteristics that must be taken into account. Among them is the trust between 
two users. To this end, we extend the original model by introducing a parameter 

 ij  representing the trust a user i  has on user j  (see Figure 1(b) for details). 

While in the original model the information transmitted by a given agent will be 
received by all its immediate neighbors and placed on the top of their attention 
list, in the new version of the model, the neighbors can decide whether or not 
to accept a meme based on their trust. At every time step, a number  [0,1]  

is drawn at random and only users with    will pay attention to the memes 

they were exposed to. Here, we consider two situations, namely (a)   = =ij ji  

and (b)  ij ji . In case (a), we assume that the trust among users is a constant 

 , while in case (b) the trust is assigned at random. In both cases,  ij  is assigned 

at the begging of the simulations and it does not change over time. 
The distribution of meme’s popularity and lifetime for different values of   

are shown in Figure 3(c-d). While both distributions have broad power-law tails 
indicating that only a few memes spread virally through the population. Surpris-
ingly, the introduction of trust does not seem to have a significant effect on the 
popularity distribution, however, the lifetime exhibits a peak that corresponds 
to the average time needed for the memes that are not selected to disappear 
from the network and, as one can see, the lower is the trust between users, the 
longer it takes. Observe that, our model reproduces perfectly the broad distri-
butions for both popularity and lifetime obtained from empirical data from 
Twitter.1 Finally, Figure 4(a) shows that network discriminative power de-
creases as the information load increases. However, the diversity does not de-
pend in a significant way on the trust   as shown in Figure 4(b). 

 
1  The empirical distribution for the popularity was obtained by counting the number 

of time 1.000.000 hashtags selected at random were shared in one year. The lifetime 
distribution was obtained by looking at the number of consecutive days a hashtag 
was mentioned. In order to measure the lifetime, we removed all the hashtags that 
were already in the system during the first and the last two weeks of the year. 
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Conclusions 

In this paper, we considered a very simple agent-based model to study the dif-
fusion of information in an on-line social network. The model allowed us to 
study the competition among memes in the presence of limited attention and 
innovation. We considered the behavior of the diversity of memes as a function 
of time and we showed that the dynamics of the system highly depend on the 
information load  . In the sense that the higher the information load, the lower 
the overall system quality. When trust was incorporated into the model, we 
showed that two of the most common metrics of success, namely, popularity 
and lifetime showed a broad power-law distribution indicating that only a few 
memes spread virally through the population, while the vast majority will simple 
die soon after their creation. Both distributions reproduced perfectly the broad 
distributions obtained from empirical data. 
 

 

Figure 4: (a) Discriminative power (color scale bar) as a function of information load and 
finite attention. (b), Diversity  =/ ( 1)H H  (color scale bar) as a function of intensity of 
information load and attention. Phase diagram for the system’s (c) discriminative power 
(color scale bar) and (d) diversity  =/ ( 1)H H  (color scale bar) as a function of info-
rmation load   and the trust   = =ij ji . 
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