Information & A Savchenko, V. Tsyganok & O. Andriichuk

. [vol. 47, no. 1 (2020): 109-121
Security g https://doi.org/10.11610/isij.4707
Published since 1998 ISSN 0861-5160 (print), ISSN 1314-2119 (online)

Research Article

A Cost-Effective Approach to Securing Systems
through Partial Decentralization

Nikita Savchenko?® , Vitaliy Tsyganok®°©® (),
Oleh Andriichuk *°

9 Institute for Information Recording of National Academy of Sciences of Ukraine,
Kyiv, Ukraine, http://ipri.kiev.ua

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,”
Kyiv, Ukraine, https://kpi.ua

ABSTRACT:

A study has been conducted on the methods of secure computation and storage
decentralization, based on expert and decision support systems’ needs. It iden-
tified the common disadvantages of modern, Distributed Ledger Technology-
based (DLT-based) decentralized systems and suggested a solution to it — the
universal transaction delegation method. This method eliminates the complex-
ity of a decentralized system from end-users’ point of view, which during the
study was identified as the main disadvantage of DLT-based systems. This arti-
cle provides a brief overview of existing approaches to solve the usage complex-
ity problem, based on data from well-known projects built with Ethereum, the
leading DLT-based smart contract platform. As a result of the research, we im-
plemented the universal transaction delegation method which does not depend
on the signature standard used in the decentralized program. In addition, we
present results of an experimental economic analysis of the solution based on
real network tests and data as of 2020.

ARTICLE INFO: KEYWORDS:

REeceivep: 08 JUNE 2020 distributed ledger technology, decentralized
Revisep: 06 Sep 2020 data platforms, delegated transactions,
ONLNE: 21 Sep 2020 Ethereum, data platforms

|
Al Creative Commons BY-NC 4.0

D Tel.: +380444542137; E-mail: tsyganok@ipri.kiev.ua

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://orcid.org/0000-0003-1107-0461
https://orcid.org/0000-0002-0821-4877
https://orcid.org/0000-0003-2569-2026
https://creativecommons.org/licenses/by-nc/4.0/legalcode

N. Savchenko, V. Tsyganok & O. Andriichuk, IS/J 47, no. 1 (2020): 109-121

Introduction

In the past decade, the novel Distributed Ledger Technology (DLT) has proven that
it can serve as one of the most reliable, secure, and even lightweight compute
and storage layers in the world of Internet and Information Technology. Despite
DLTs still have some scalability issues, they are being applied to more and more
systems which require the outstanding level of security and cryptography.

In 2020, DLT-based solutions have developed up to the level where complete
software systems are built with DTL, meaning the complete absence of the tradi-
tional server-side technology such as web servers. An example of such systems
are new terms, like crypto Tokens or Decentralized Finance applications. They are
built on top of what we call Decentralized Data Platforms (DDPs) in this paper, as
they not only store the data but also have a light computation capability. The
compute layer allows creating advanced decentralized programs on top of the
DDP by using its native programming language, which inherits its security proper-
ties. The resulting applications, which typically have a web user interface and a
decentralized back end are called DApps, or decentralized applications.

The main property of any DDP is the resistance to attacks, which prevents
any unwanted impact on the decentralized programs they run, such as down-
time or changing the data in a way which was not programmed in the decen-
tralized program. The underlying DDP algorithm, such as Proof of Stake in block-
chain, makes the data practically impossible to delete, tamper with or even de-
crease its availability, as the platform is supported by hundreds of thousands of
computational nodes which constantly verify the network state and perform
common verification tasks in competition towards getting a reward.! Among
other characteristics of DDPs, we can identify their scalability (readiness to scale
according to the growth of the network usage), bandwidth (throughput or max-
imum number of transactions per second), degree of decentralization (com-
plete or partial) and the cost of their maintenance (both monetary and compu-
tational) as the main properties.

Examples of such DDPs are Bitcoin, Hashgraph, TON, Ethereum and other
projects.? These DDPs are supported by their own decentralized networks,
which consist of thousands of nodes located worldwide. These data platforms
are used today for a variety of tasks: creating programmable cryptocurrencies,
securing data storage, such as, for instance, a registry of land properties or a
public document registry, registering goods or cargo, cryptographically pro-
tected elections, real-world assets tokenization.

One of the most important problems in 2020 preventing the adoption of this
technology by large-scale businesses or governments is the complexity of its us-
age, as well as the lack of the universal approach to building decentralized ap-
plications, is solving the task of the system complexity for end users.?This paper
describes the possibility of building the universal method for DApps, regardless
of the DDP used by the decentralized program. Also, it describes the cons and
pros of using the described approach with different modern systems and the
applied model for various systems based on this approach. The suggested ap-
proach improves the security of theoretically any computer system, reducing

110

A Cost-Effective Approach to Securing Systems through Partial Decentralization

the risk of tampering with its data and manipulations with data entry, while also
requires some special setup and integration steps. This approach uses the uni-
versal method for transaction delegation, meaning that it can be applied to any
decentralized program on top of any DDP with the support of basic cryptog-
raphy functions such as hashing. And its usage simplifies the end user experi-
ence while does not neglect its security or decentralization levels.

The Complexity of Decentralized Systems Usage

As of 2020, there is no known approach to creating a scalable decentralized net-
work which would not require all network nodes to participate in every trans-
action validation except sharding, which also does not allow to scan indefi-
nitely.* Additionally, each decentralized network participant must obtain some
profit from participating in the DDP support process, or otherwise the network
will not get enough participants.®

Most of modern decentralized data platform use cryptocurrency rewards to
reward those who support the network, so that they have a strong financial in-
centive to participate in it. Hence, network users must pay commission to use
the decentralized platform.® This commission is used to reward parties who sup-
port the decentralized network. Paying fees also plays a precautionary role and
protects the network from spam attacks, making them much more expensive to
perform.

This way, to use any decentralized data platform, the user has to purchase
some amount of platform-specific currency which is used to pay fees. Only after
obtaining some cryptocurrency, users can start using the DDP and DApps on top
of it. Given that purchasing cryptocurrency for each decentralized data platform
is a complex process, especially considering local laws and payment methods
available, most Internet users and developers just refrain from using and devel-
oping web services based on DDPs. This is what we classify as an adoption and
a user experience problem. Currently, all well-known DDPs such as Ethereum or
EOS require paying fees, which can only be purchased or handed over from one
user to another. DDPs trying to avoid the fee problem built on top of other tech-
nologies such as IOTA’s Tangle are currently not considered as stable and secure
as blockchain-based DDPs.’

While the problem of fees is related to DDPs in general, for web services in-
tegrating with DDPs, their use becomes very much limited to the number of
users which are able not only to understand the concept of decentralized net-
works, but also to buy a cryptocurrency and effectively go through the DApp
onboarding flow. Thus, the use of applications and web services basing on de-
centralized data platforms either gets very narrow in terms of application, or
the decentralized part of the application is simplified to a degree when the
whole system loses its important functions and becomes more vulnerable to
attacks and centralization problems.

111

N. Savchenko, V. Tsyganok & O. Andriichuk, IS/J 47, no. 1 (2020): 109-121

Approaches Used to Simplify the User Experience

The use of “DApps”, or Decentralized Applications requires a special software or
browser extensions known as wallets, which store the private keys of decentral-
ized identities, or accounts (also known as addresses when referring to the public
key). The decentralized account (stored in wallet), in terms of the decentralized
data platform, is the user's unique identifier in the network, used to perform cer-
tain actions within (or even out of) the data platform.? In other words, the account
is represented by public and private key pairs, generated solely by the users. In
any case, to create the account, the user creates the secret (the private key) that
allows them to perform certain operations in particular decentralized platform.
Sometimes, it can be compatible with multiple platforms or decentralized net-
works. Wallets always keep the secret (private key) of the user offline and allow
to interact with the decentralized platform. Using just a single secret, which be-
comes more and more common practice, one can generate practically an infinite
number of addresses by utilizing the Hierarchical Deterministic (HD) key creation
algorithm, such as BIP32.8

Wallets are commonly presented in the form of mobile applications, plugins
for Internet browsers, physical devices, individual software, or internet brows-
ers with built-in support of a particular decentralized data platform. Good ex-
amples of existing crypto wallets are Trezor and Ledger (physical devices),® Trust
and Metamask (mobile applications), Metamask (extensions for Internet brows-
ers), Mist, Brave and Opera (Internet browsers with built-in crypto support).t°

Creating a wallet is usually a quick and easy process, but it anyway requires
some time and efforts. If the wallet’s secret is lost, users will no longer be able
to restore their account, forever losing the access to it.* But the biggest diffi-
culty for users remains topping up the account balance with the certain amount
of cryptocurrency, which allows them start interacting with the application. The
simplifications to this complex step are typically applied at the step of getting
cryptocurrency. Thus, transforming a number of steps to the single one — cre-
ating a crypto wallet and an account. This typically eliminates the step of ob-
taining cryptocurrency for the user by replacing the execution of transactions
(which require cryptocurrency) with delegation, where another party pays for
the transaction instead of the first party.

There are several approaches one can take to utilize delegated transactions:

1. Trusted transaction delegation, where no cryptography is used, and trans-
actions are just executed by the trusted party.

2.Delegating transactions with decentralized auxiliary identity programs,
where a utility decentralized program represents the intermediary who
owns assets and exposes an interface for different parties to control this
program.

3. Delegating transactions without decentralized auxiliary identity programs,
where the delegation is already supported natively either by the primary
decentralized pro-gram or the decentralized data platform itself.

112

A Cost-Effective Approach to Securing Systems through Partial Decentralization

The latter approach is the most preferable one, however, is the most difficult
to standardize at the data platform level. The standardization at the level of
decentralized applications is possible, as delegates are usually the companies
themselves that support the decentralized application and have complete tools
to work with their decentralized token programs, including trading and crypto-
currency exchange tools. From the decentralized data platform view, the prob-
lem of paying commission in any arbitrary cryptocurrency or asset has a com-
plex nature of the exchange, which does not allow the accurate estimation of
the fee to be charged nor to exchange any possible asset without partial data
platform centralization. For instance, the payment of a commission in asset X
may be refused by the delegate A because the delegate simply does not trust
the asset as they cannot exchange it for yet another currency they need. This
can happen when no exchangers are available, the exchange is restricted by law,
there is high risk and volatility in the market, the target asset is fresh new, etc.

Universal Unstandardized Decentralization Method

The method of transaction delegation which does not require standardization
is based on the method which does not use intermediate (identity) decentral-
ized programs. This method is an improvement of the one where delegated
function(s) are programmed directly in the decentralized asset (token) control
program, which is also used to pay commissions. Note that one DDP can have
multiple assets on top of it, and below we describe the process of creating del-
egated transactions for a single asset (as multi-asset delegated transactions are
not common).

Figure 1 below describes the interaction of the user with the decentralized
program by using the universal delegation approach.

i I i V1
I ' 1 1
! Recipient address ' ' : Other_ i |
' ' ' R = decentralized | |
i 1 data + 1 data ' i it
. i . [H | programs | .
Signature 1 isignature w+ signature " H 5
™ " ‘ T :
i ' 1 1
E E i Decentralized token IJla;aa?ncel i
Account 1 | Additional parameters | ! Delegate . program - signatur '
i 1 1 validation H
i I 1 1
M e e = ! e e e e
Graphical user interface Decentralized data platform

Figure 1: The universal transaction delegation approach demonstrating the user’s
interaction with the decentralized program.

The diagram below shows the flow of the delegated transaction execution:

e The user gets structured data or types data in the GUI (graphical user inter-
face).

e The user then signs this data with some important additional parameters
(such as commission, deadline, transaction ID, etc.) using their decentral-
ized account.

113

N. Savchenko, V. Tsyganok & O. Andriichuk, IS/J 47, no. 1 (2020): 109-121

e The user gives the signature along with the signed data to the delegate.

o A delegate sends the expensive transaction to the decentralized data plat-
form, paying a fee in a platform-specific cryptocurrency they already own.

e The decentralized asset program additionally performs checks over the sig-
nature and the signed data to ensure that it is genuine before allowing the
actual transaction. Thus, the delegate cannot perform any other operations
rather than the one signed by the user, i.e. the delegated transaction is
100% specific but is just not specifically determined in time.

A decentralized token program can be developed using any existing standard:
for example, ERC721 or ERC20 if the target DDP is Ethereum.!? It is worth noting
that this approach can be easily ported to other blockchain-based DDPs, as
many of them are Ethereum Virtual Machine-compatible or have a similar par-
adigm. To be able to apply the above approach, the following must be imple-
mented in the expensive asset (token) decentralized program:

e For every function of a decentralized program which means for the public
use, the similar additional “delegated” alternative to this function should
be provided that will perform the same action but will not depend on the
calling account (delegate), as it is with the default functions. This should be
the main concept for designing the asset (token), as it will allow to benefit
later. The function should use the provided digital signature to recognize
the calling account and act accordingly. For instance, if the decentralized
asset program has a “transfer” function that allows to transfer assets from
one account to another, the "signedDataTransfer" must be additionally
provided, which allows the account to transfer assets with the help of any
delegate. Alternatively, the contract can provide the single-entry point
function to call any other functions with the use of electronic signatures
(delegate function).

e When possible, the delegated function should support several existing sig-
nature standards used in the DDP. Using multiple standards instead of one
increases chances of the smooth DApp work in the future. It should be
noted that over time, some signature standards may become deprecated
and using multiple available signature standards makes it more future
proof.

e The function itself must take additional arguments required to limit its ab-
normal use, giving additional security guarantees for the signing account.
Some recommended arguments are transaction ID, transaction deadline,
and the account which receives the fee. Additional arguments must be
added to the signature and to the decentralized program for verification.

e In addition to the above points, such function can even be provided in the
dedicated decentralized program, typically utilizing functions similar to
Ethereum ERC20s “approveAndCall.” This can create the framework for any
programs to even access multiple assets in the single transaction.

114

A Cost-Effective Approach to Securing Systems through Partial Decentralization

Below we provide the guidelines of the recommended approach for creating
functions one the example of an Ethereum, using the decentralized asset (to-
ken) program utilizing ERC20 standard. The “transfer” function is used as an ex-
ample; however, any other function can be implemented in a similar way. This
approach simplifies the use of a DApp by eliminating the additional cryptocur-
rency that must be paid as a fee in almost any DDP. It should be noted that this
approach can be applied to any DDP unless the platform itself provides for an-
other option for delegated transactions.

The ERC20 transfer function transfers the certain number of assets (the pro-
grammable cryptocurrency, or tokens) from one account to another. We sup-
pose that the "signedDataTransfer" function is also present, and does the same
what the “transfer” function does, also allowing the delegation of its execution.
Unlike “transfer”, “signedDataTransfer” can be invoked by any account not nec-
essarily the one intending to transfer some assets. Its result eventually will be
the same to the “transfer.” Figure 2 shows the way of performing the function
call by the user and a delegate. The “signedDataTransfer” additionally imple-
ments the optional fee payment to cover the delegate's account expenses for
performing the original transaction in the decentralized network.

signedDataTransfer function legat all

Data Data
Direct call | Decentralized token + signature + signature | pelentralized token
program el il program

transfer function (direct call

Account Account Delegate
— & 2
& ~ Recipient & 4|_>Rec|plent
z P v
Account L » & Account i > & - -
Miner Delegate Miner

Figure 2: “Transfer” and “signedDataTransfer” functions difference in terms of fee
transfers.

As observed from the diagram on the figure 2, within the delegated call the
sending account pays the fee in the transferred asset itself, while the commis-
sion for this transaction is paid by the delegate. Later, the delegate exchanges
the asset to another one, which covers their expenses. Most notably, it elimi-
nates the requirement of account holding multiple currencies (for Ethereum,
holding Ether currency). The commission payment can be skipped at all, but it
is displayed in the diagram for instance.

The “signedDataTransfer” not only accepts the same arguments as the trans-
fer function but also adds a number of additional parameters. Figure 3 shows
the recommended arguments.

115

N. Savchenko, V. Tsyganok & O. Andriichuk, IS/J 47, no. 1 (2020): 109-121

contract ERC20 {
function transfer(to, value) external;
function transferviaSignature(from, to, value, fee, feeRecipient, deadline, sigld, sig, sigStd) external;

}

Figure 3: Recommended arguments of the delegated function for the decentralized
asset program.

While the “transfer” accepts just a few arguments, the recipient and transac-
tion value, “signedDataTransfer” additionally accepts more arguments:

from — sender’s address. It can be optional. Unlike in “transfer,” the
sender’s account is not the account that actually publishes the transaction,
so it may be additionally provided or retrieved from the signature. This ap-
plies to many DDPs.

fee — the fee in the same asset paid by the sender to the “feeRecipient.”

feeRecipient — an address which receives the commission. It is advised to
keep this parameter or use the invoking account as “feeRecipient.” Be-
cause the transaction sent to the network can be cloned and executed
faster than the original one (race condition), which will result in dropping
the original transaction.

deadline — the time when transaction will no longer be possibly. It is vali-
dated in the decentralized program. In case of the leak of the signed data
or signature, the user can be sure that nobody is be able to execute his
transaction or sign the data once the previous signature expires.

sigld is the unique transaction identifier, validated in the decentralized
program. It can be optional when replaced with sequential number. In case
when the signature got lost, the signing account can recreate the transac-
tion with the same sigld to ensure that the previous transaction will not
ever happen.

sig — the signature created by the sender's account, with additional argu-
ments signed, thereby confirming the account’s intent to perform a spe-
cific action.

sigStd — the identifier for the case of using different signature standards
(it is recommended to implement multiple signature standards).

Therefore, these additional arguments and their verification limit the ability
to manipulate the transaction in any possible way. The sending account can be
sure that the transaction either executed or not, and its action is clearly defined.
The only thing which this scheme cannot guarantee is the time of the transac-
tion execution. Delegates may refuse to execute transaction, and the sender
will have to either find the other delegate or do the expensive transaction them-
selves by purchasing cryptocurrency. It is important to note that typically, a del-
egate is an authority which officially supports and maintains the DApp, hence it
is not interested in delaying requests in anyway (but in turn it earns an addi-
tional commission for delegating transactions).

116

A Cost-Effective Approach to Securing Systems through Partial Decentralization

Adding transaction delegation to any system almost always results in its par-
tial centralization. Network users must rely on delegating institutions in order
to use the application. This centralization is an addition to already decentralized
functions (“transfer”) for the sole purpose of system simplification for the end
user. For DApps to remain fully decentralized, this approach allows writing del-
egate capabilities as auxiliary ones, keeping the original functions, which allows
performing the same thing, but in the centralized way.

By having the delegated function in case, the delegate does not accept the
sending account's transaction, the user themselves can become delegates. This
is the only exceptional case when they would need to purchase cryptocurrency
in order to transact when delegates are absent.

Cost Estimation

The evaluation operation costs of the expert system were carried out with a
preliminary evaluation of the methods of data compactification and based on
the actual results of the system operation in the public Ethereum decentralized
network (Ethereum mainnet). The study used a system that compacted data
into a decentralized network with overwriting obsolete data, but without the
use of data grouping. It conducted an average of 2 delegated transactions per
day for 3 months in real time, with each transaction changing 768 bits of infor-
mation in a decentralized registry. Only some transactions were recording new
data, while the majority of transactions (90%) were overwriting existing data.
The transaction cost, which is set by the user P (gas price) was not minimized by
deferred execution of transactions: every transaction was using the current cor-
responding value of the decentralized network.

The results of the study are aggregated in the Table 1, together with the cal-
culated values for Table 1. The visualization of values throughout the period of
running the experiment is shown in Figure 4. The blue graph shows the amount
of cryptocurrency = (Ether) on the balance of the account that made the dele-
gated transactions, while orange indicates the number of transactions that oc-
curred on a day.

Where:

e Gas — a unit in Ethereum which measures the absolute cost of performing

the transaction in the DDP. The more computation involved in the trans-
action, the more “gas” is used. Measured in Weis.

e Ether —an expensive asset proportional to the gas spent.

The results obtained prove that the developed transaction delegation system
is ready to work in real conditions, despite the fact that at the time of testing it
did not implement several significant optimizations that reduce the cost of its
operation, namely grouping transactions their deferral to the times of the low-
est network utilization (typically at night).

117

N. Savchenko, V. Tsyganok & O. Andriichuk, ISIJ 47, no. 1 (2020): 109-121

Table 1. Aggregated data derived from the experiment without storage and realtime
cost optimizations.

Designation Value Unit Description
tstart 1/10/2020 Date Start of the experiment
tond 3/10/2020 Date End of the experiment
n 95 Txs Total number of transactions made
Pavg 3.815 GWei Average cost of gas at the time of transac-
tion
Gavg 1.368 x 10° N/A Average amount of gas consumed for each
individual transaction
bavg 768 Bits/Tx Average amount of data recorded /
changed in bits of information
Smar 128.92 usD The market price of Ether cryptocurrency
as of March 11, 2020
Gexp 5.19 usD Total spent on the system in real time
without additional optimizations
Omin 0.4 usD Total lowest possible equivalent cost
when applying additional optimizations
20.62
15.47
10.31
5.16

13. Jan

20. Jan

27.Jan

3. Feb

10. Feb 17. Feb 24. Feb 2. Mar 9. Mar

Figure 4: The comparison of spendings on the real system and the number of transac-
tions in the main public network Ethereum without grouping transactions and de-
ferred execution. Orange chart denotes the number of transactions without using
grouping (legend on the right), blue chart - transaction costs in $ equivalent (legend

on the left).

118

A Cost-Effective Approach to Securing Systems through Partial Decentralization

Based on the results obtained after analyzing different ways of compacting
the data, we can determine by how much the cost of system operation is re-
duced by applying transaction grouping and performing them at the lowest pos-
sible network load (such as at night or on weekends). It should be noted again
that the optimized data impose additional constraints on the system functions,
however, when using the suggested method of transaction delegation, these
restrictions are not critical to the most of systems it is applicable for.

Thus, we obtain:

e carrying out transactions during the minimal load of the decentralized net-
work will allow to reach the minimum value of Py, = 1.01 X 10°, which
reduces the costs by 0o, = 74% in relation to the results of the conducted
study with Pavg obtained in real time;

e when applying the method of compacting data with overwriting outdated
information and grouping transactions, n = 95 transactions could be car-
ried out in just two transactions with the total amount of data being writ-
tenb = n X by, with the additional savings of 0, = 74%. This value
can be calculated by substituting the aggregate values in formula (2) for

g0 = 8o extramin = 51000;

e when applying both optimizations, we obtain the lowest possible total cost
reductiono = 1— (1 —04,) X (1 —0;) = 92.2%.

Thus, the minimum possible cost of writing b =71.25kb of data to the public
decentralized Ethereum registry using two delegated transactions is only
Sexp X (1 —0) = $0.4. Indeed, this is only a minimal estimate, which is highly
dependent on the volatility of cryptocurrency prices and network load.?
In the past, there were cases where a budget restriction of the decentralized
system would not allow transactions to take place for several months or would
have greatly exceeded that budget. In addition, the minimum value obtained
does not consider the cost of any additional logic other than the plain write of
the data obtained from experts and secure interaction through transaction del-
egation. Any additional information or logic, for example, when considering
consistency of estimates,'* will be charged additionally.

Conclusions

A universal method of transaction delegation has been developed and tested
on the real network, which combines the advantages of existing methods, has
a standardized backend server and client side, and at the same time does not
require standardization of the decentralized application. This leads to a simpli-
fied interaction between user and DApp, as now user doesn’t need to hold both
DApp’s and DDP’s currencies in order to perform transactions. Suggested the
use of the method for decentralization of expert evaluation systems within
other systems, as well as some ways to optimize the cost of operation of such
systems, which can result in a total cost reduction of 92.2 % compared to the
typical, non-optimized cost of decentralized applications.

119

N. Savchenko, V. Tsyganok & O. Andriichuk, IS/J 47, no. 1 (2020): 109-121

The developed method and a software for transaction delegation in decen-
tralized data platforms facilitates the further adaptation of decentralized appli-
cations in all spheres of life and technology, since this method simplifies both
the user experience and the necessary efforts for developers to implement the
transaction delegation system in their projects.

The universal transaction delegation method was tested on a project that has
nearly 2000 decentralized application's users (the number of users is approxi-
mated based on the number of addresses owning a project's token). This devel-
opment is the open-source solution that can be adopted by any other project
based on the decentralized Ethereum data platform.?®

Acknowledgement

This research was supported by CyRADARS project (SPS G5286 “Cyber Rapid
Analysis for Defense Awareness of Real-time Situation”) in the frame of the
NATO Science for Peace and Security program.

References

! Sunny King and Scott Nadal, "Ppcoin: Peer-to-peer crypto-currency with proof-of-

stake," self-published paper (August 19 2012): 1.

Patrick Schueffel, "Alternative distributed ledger technologies Blockchain vs. Tangle
vs. Hashgraph-A high-level overview and comparison," Tangle vs. Hashgraph-A High-
Level Overview and Comparison (2017).

Mykyta Savchenko, Vitaliy Tsyganok and Oleh Andriichuk, “Decision Support Sys-
tems' Security Model Based on Decentralized Data Platforms,” Selected Papers of the
XVIIl International Scientific and Practical Conference "Information Technologies and
Security" (ITS 2018), pp. 199-208.

Hung Dang, Tien Dinh, Eechien Chang, Qian Lin, and Beng Ooi, "Towards scaling
blockchain systems via sharding," Proceedings of the 2019 International Conference
on Management of Data (SIGMOD '19), 2019, pp. 123-140.

Dilip Mookherjee, “Decentralization, hierarchies, and incentives: A mechanism de-
sign perspective,” Journal of Economic Literature 44, no. 2 (2006): 367-390.

Siraj Raval, Decentralized Applications: Harnessing Bitcoin's Blockchain Technology
(O'Reilly Media, Inc., 2016), 6-7.

Andrew Cullen, Pietro Ferraro, Christopher King, and Robert Shorten, "Distributed
ledger technology for IoT: Parasite chain attacks," arXiv preprint arXiv:1904.00996
(2019).

Dmitry Khovratovich and Jason Law, “BIP32-Ed25519: Hierarchical Deterministic
Keys over a Non-linear Keyspace,” 2017 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW) Paris, France, 2017, pp. 27-31.

Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos Kiayias, “A
Formal Treatment of Hardware Wallets,” IACR Cryptology ePrint Archive (2019): 34.

120

A Cost-Effective Approach to Securing Systems through Partial Decentralization

10 M. Pustidek and A. Kos, “Approaches to front-end loT application development for
the ethereumblockchain,” Procedia Computer Science 129 (2018): 410-419.

11 Hossein Rezaeighaleh and Cliff C. Zou, “New Secure Approach to Backup Cryptocur-
rency Wallets,” In submission to IEEE Global Communications Conference-Communi-
cation & Information Systems Security Symposium, 2019.

12 Mark Kim, Brian Hilton, Zach Burks, and Jordan Reyes, “Integrating Blockchain, Smart
Contract-Tokens, and 10T to Design a Food Traceability Solution,” 2018 IEEE 9th An-
nual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), November 2018, pp. 335-340.

Krzysztof Wotk, “Advanced social media sentiment analysis for short-term cryptocur-
rency price prediction,” Expert Systems, 2019, DOI: 10.1111/exsy.12493.

Vitaliy Tsyganok and Sergii V. Kadenko, “On sufficiency of the consistency level of
group ordinal estimates,” Journal of Automation and Information Sciences 42, no. 8
(2010): 42-47.

Nikita Savchenko, “Ethereum Delegated Transactions Service,” Crypatograph DApp
github.com, 2019, https://github.com/ZitRos/ethereum-delegated-tx-service [ac-
cessed June 8, 2020].

13

14

15

About the Authors

Nikita Savchenko holds B.Sc. (2016) and M.Sc. (2018) in computer science from
the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic In-
stitute.” Currently, he is a PhD student in the Institute for Information Recording
of National Academy of Sciences of Ukraine.

Vitaliy Tsyganok holds a DSc degree in system analysis and optimum solutions
theory from the Institute for Information Recording of National Academy of Sci-
ences of Ukraine. Currently, he is head of Laboratory for Decision Support Sys-
tems in the Institute for Information Recording of National Academy of Sciences
of Ukraine and professor in the National Technical University of Ukraine “Igor
Sikorsky Kyiv Polytechnic Institute.”

Oleh Andriichuk holds a M.Sc. degree in applied mathematics from the National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” and
PhD degree in system analysis and optimum solutions theory from the Institute
for Information Recording of National Academy of Sciences of Ukraine. Cur-
rently, he is senior researcher in the Institute for Information Recording of Na-
tional Academy of Sciences of Ukraine and lecturer in the National Technical
University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute.”

121

	Introduction
	The Complexity of Decentralized Systems Usage
	Approaches Used to Simplify the User Experience
	Universal Unstandardized Decentralization Method
	Cost Estimation
	Conclusions
	Acknowledgement
	References

