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A B S T R A C T :  

This article examines many existing measures of uncertainty of basic belief 
assignments proposed in the literature related to the theory of belief func-
tions. Some measures capture only a particular aspect of the uncertainty, 
others propose a total measure of uncertainty to characterize the information 
quality of a source of information. We discuss the effectiveness of these 
measures with respect to four main important desiderata that we consider 
essential for the definition of a satisfactory measure of uncertainty, i.e. 
effective entropy of basic belief assignment.  
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1. Introduction 

In the classical framework of belief functions, a source of evidence expresses its 
belief on the possible solutions of a given problem defined with respect to a 
chosen (finite) frame of discernment (FoD) . This belief is usually character-
ized by a basic belief assignment (BBA), referred also as a belief mass denoted 
by m(.) . One of the major concerns related with belief functions is how to 

measure/quantify the uncertainty encompassed by a source of evidence and 
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inherent to any BBA. This problem is challenging and of crucial importance, 
because its effective solution would allow to well characterize any BBA, to make 
fair comparisons of sources of evidence, to compare fusion results in terms of 
uncertainty reduction, to achieve a BBA complexity reduction by new approxi-
mations methods, etc.  

In this article, we make a state‐of‐the‐art survey of most of the existing 
MoUs available in the literature and point out their theoretical drawbacks to 
warn the reader about their misuses and irrelevances in applications. This work 
justifies the requirement for better effective MoUs to make a step ahead in the 
understanding and characterization of uncertainty in the belief functions 
framework. There exist several survey papers covering different proposals for 
measures of uncertainty, among them we must cite by chronological order,1-14 
and more recently in the works of Moral‐García and Joaquín Abellán 15 and 
Jousselmen and co-authors.16 These papers however do not consider the effec-
tiveness of MoU as we propose in this paper.  

In the sequel, we suppose the reader is familiar with the classical (i.e. Shan-
non) information theory,17-22 and especially with Shannon entropy measure, and 
with the theory of belief functions introduced by Shafer.23 Some of these basics 
are recalled in an appendix for convenience and for recalling the classical nota-
tions.  

This paper is organized as follows. In section 2 we present and justify the 
four essential desiderata that an MoU should satisfy in order to be considered 
as effective. In section 3 we examine many existing MoUs proposed in the 
literature over 40 years and check if they pass the effectiveness test, or not. For 
those that pass successfully the test, we examine in detail in section 4 if they 
are sufficiently well justified for considering them as a serious candidate for 
effective MoU to be used in applications. Section 5 concludes this survey and 
gives some perspectives for future research works.  

2. Desiderata for an effective MoU 

Our analysis of many existing works on Measures of Uncertainty (MoU) of belief 
functions reveals that most of MoUs suffer from serious problems, and we 
explain why in the next section. Here we introduce several very essential desid-
erata that a satisfactory MoU, denoted by U(m) , should satisfy. Some of these 

desiderata have already been identified in the past by some researchers 
working towards axiomatic approaches of MoUs, for instance by Klir 8 and 
Abellán.12,13,15 Here we keep only the four desiderata that we consider as really 
important and indispensable, and we justify our choice for these desiderata. We 
also explain why we consider the other desiderata not fundamental, and why 
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we decide to discard them. The four essential and indispensable desiderata we 
consider for a satisfactory MoU are mathematically expressed as follows  

● Desideratum D1: (zero min value of U(m) ) 

U(m) 0  (1) 

if the BBA m defined on the power set 2 of the frame of discernment  is fo-

cused on a singleton, that is if m(X) 1  for some X of 2  with X 1 .  

Justification of D1: This desideratum is very natural and intuitive because any 

particular BBA for which m(X) 1 with X 1  characterizes the certainty of a 

singleton X, which is one of the most specific elements of 2 . There is no 
uncertainty about the choice of this element X characterized by m(X) 1 since 

this element X (the smallest information granule) does not include other smaller 
elements in it. So, the measure of uncertainty must be minimal, and it can 
always be arbitrarily set to zero reflecting well such a non‐uncertainty case.  

● Desideratum D2: (increasing of MoU of vacuous BBA)  

v vU(m ) U(m ) if       (2) 

where vm and vm  are the vacuous BBAs defined respectively on the frames of 

discernment (FoDs)   and   of cardinalities  and  . 

Justification of D2: This desideratum stipulates that the measure of uncertainty 
of a total ignorant source of evidence represented by the vacuous BBA must 
increase with the cardinality of the frame of discernment. This desideratum 
makes perfect sense because the total ignorant source of evidence on 

 1 N,...,    for which vm ( ) 1   means that one knows absolutely nothing 

about only N elements, whereas the total ignorant source of evidence on 

 1 N N 1 N,..., , ,..., 
      for which vm ( ) 1    means that one knows 

absolutely nothing about more elements because N′ > N. This clearly indicates 

that vm  must be considered in fact as more ignorant than vm , and the 

condition (2) reflects this necessity. 

● Desideratum D3: (compatibility with Shannon entropy)  
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X

U(m) m(X)log(m(X))


   (3) 

if the BBA m(.)  is a Bayesian BBA defined on the FoD  . We recall that any 

Bayesian BBA commits zero belief mass for all elements of the power set of   
having their cardinality greater than one.23  

Justification of D3: This desideratum D3 seems also very natural because Shan-
non entropy is the most well-known (and justified 20,24-27) measure used so far 
to quantify the uncertainty (i.e. the randomness, or variability, also called 
conflict by some authors) of a probability mass function (pmf). Because any 
Bayesian BBA induces belief and plausibility functions that coincide with a 
probability measure, one must have a total coherence of U(m)  with Shannon 

entropy when the BBA is Bayesian if one admits, as we do here, that Shannon 
entropy is an effective measure of the uncertainty (or randomness) of a pmf. 
Under the acceptance of Shannon entropy as MoU for pmf, the desideratum D3 
makes perfect sense. Of course, this desideratum D3 could be disputed (and 
eventually rejected) if one can cast in doubt (based on very strong justification) 
the use of Shannon entropy as MoU for pmf. For alternatives of Shannon 
entropy, see for instance the non‐exhaustive list of alternatives 28-30 and 
discussions.9,31-33 

● Desideratum D4: (unicity of max value of U(m)) 

v vm m U(m) U(m )    (4) 

where m is any BBA different from the vacuous BBA mv defined with respect 

to the same FoD.  

Justification of D4: This fourth desideratum is very important and it makes 
perfect sense also because the total ignorant source of evidence is 

characterized by the vacuous BBA  vm . , and no source of evidence can be 

more uncertain than the total ignorant source, so the unique maximum value 

of U(m) must be obtained for vU(m ) . As it will be shown next, many existing 

MoUs fail to satisfy this important and essential desideratum.  

Effectiveness of a measure of uncertainty: A measure of uncertainty U(m)  is 

said effective if and only if it satisfies desiderata D1, D2, D3, and D4 and if it is 
strongly well justified. Any MoU that fails to satisfy at least one of these 
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desiderata is said non‐effective, and in this case it cannot be considered seri-
ously as a satisfactory measure of uncertainty for characterizing a basic belief 
assignment of a source of evidence. Consequently, all non‐effective MoUs 
should be discarded in all applications that necessitate some MoU evaluation.  

Remark 1: It is worth noting that we do not specify a priori what should be the 
range of an effective MoU in contrary to some axiomatic attempts made by 
different authors as reported, for instance, in 15,34,35,104. We consider that the 
choice of the range must not be chosen a priori. The maximum range must 
result of the effective MoU mathematical definition. We only request the 
satisfaction of the desideratum D4, which is much more general, natural, and 
essential.  

Remark 2: We voluntarily do not include the subadditivity desideratum in the 
list of our desiderata for the search of an effective MoU in the belief function 
framework because this desideratum appears in general (i.e. for non‐Bayesian 
non‐vacuous BBAs) to be incompatible with essential desideratum D4, and thus 
it is illusory and vain to ask for a sub‐additive MoU for non‐Bayesian non‐
vacuous BBAs. We recall that the subadditivity condition is defined by 

U(m ) U(m ) U(m )     or any joint BBA defined on the Cartesian product 

 of FoDs  and  , where m is the marginal (i.e. projection) of m (.)  

on the power‐set 2 , and m  is the marginal (i.e. projection, see36,37 for 

definition) of m (.)  on the power‐set 2  . This impossibility comes from the 

fact that there exist in general 2 2 2 0
   
   elements of the power set 

2 
 
(including some disjunctions of elements of  ) whose mass of belief 

cannot be obtained from the masses of elements of 2  and of 2  , and which 

contribute in the uncertainty measure of the joint BBA m  . Indeed, if N   

and N    the Cartesian product space  has N N elements and its 

power set 2  has N N2  elements which is always bigger than the Cartesian 

product space of power sets 2 2   because NN N N N N2 2 ( 2 ) 2      as soon as 

N 2 and N 2  . It is worth mentioning also that most of elements of 2 2  

do not have the same structure as the elements of the power set2  . This 

means that we cannot recover the joint BBA m  from the product, or 

combination, of its marginal m and m  in general, but if the joint BBA is 
totally vacuous or if the joint BBA is Bayesian and if it is equal to the product of 
two so‐called non‐interacting (or independent) probability measures8. To be 

more clear, consider two FoDs  and   with 2  and 3  . Hence the 
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Cartesian product space   has 2 ⋅ 3 = 6 elements1, and its power set 2 

has 2 6 = 64 elements (couples, and unions of couples). If we consider the vacu-

ous BBA vm 
 
on 2  defined by vm ( ) 1   , then its projection on   

is the vacuous BBA vm ( ) 1   defined on the FoD  1 2,   having only two 

elements, and its projection on   is the vacuous BBA vm ( ) 1   defined on 

the FoD  1 2 3, ,        having only three elements. Why the MoU of vm 

 (i.e. 

full ignorant source) related to 6 elements of  should be less (or equal) to 

the sum of MoU of vm related to only the two elements of   and the MoU of 

vm 
 
only related to the three elements of  ? To amplify this point, if we 

consider 5  and 8   then 40  . Why the MoU of the vacuous 

BBA vm  related to 40 elements of   should be less (or equal) to the sum 

of MoU of vacuous BBA vm related to only 5 elements of  and the MoU of the 

vacuous BBA vm  only related to the 8 elements of  ? We do not see any solid 

theoretical reason, nor intuitive reason, for justifying and requiring the subaddi-
tivity desideratum in the general framework of belief functions, and put it as a 
property to be generally satisfied.15 Unlike Vejnarova and Klir opinions 38(p.28) 
and many authors, we do not consider that the meaningful measure of 
uncertainty of basic belief assignment must satisfy the subadditivity property. 
The proposal of adding the desiderata of subadditivity, additivity, and mono-
tonicity for a search of a MoU of belief functions had been explored and de-
fended by Klir in2 at the end of 1980s. It is however worth mentioning that if a 
MoU satisfies the desideratum D3 (when the BBA is Bayesian), its subadditivity 
property is always guaranteed because Shannon entropy is subadditive.8,20  

3. Existing measures of uncertainty 

In this section we analyze most of existing measures of uncertainty available in 
the open literature related to belief functions. We verify if these measure pass, 
or not, the effectiveness test. We say that a MoU fails the effectiveness test if 
at least one of the desiderata D1, D2, D3 or D4 is not satisfied by the MoU under 
test. If necessary, we explain what is the problem with this MoU and when 
necessary we give a counter‐example for it.  

Tables 1 and 2 show the formulas of all the MoUs analyzed in this work. 
Some existing MoUs capture only some aspects of uncertainty 2 and have 

                                                           
1  Each element is a couple of the form i j( , ), i 1,2 and j 1,2,3    . 

2  Referred to as entropy‐like uncertainty, non-specificity (or imprecision), and fuzziness which 
is uniquely connected with fuzzy sets.10 
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specific names given by their authors (e.g. conflict, dissonance, discord, strife, 
etc.) listed in the third column of these tables.3 For convenience, the MoUs have 
been indexed and listed by the year of their publication in Tables 1 and 2. We 
have also included in Tables 1 & 2 the names of authors of the MoUs, the names 
of the MoU when it exists (and eventually new names if needed for clarity), and 
the formulas of the MoUs. For convenience, we have used the natural log in the 
mathematical expressions of MoUs for the homogeneity of the presentation. 
Some authors prefer log2 instead, but this preference does not really matter 
because the values of an expression will differ only from the constant multipli-
cative factor 1/log(2), and the unity will just change from nats to bits. 

Table 3 indicates if each MoU satisfies, or not, the desiderata D1, D2, D3 
and D4, and thus if it passes the effectiveness test, or not. Most of results listed 
in Table 3 are easy to verify directly from the mathematical definition of each 
MoU of Tables 1 and 2, and are left as exercises for the reader. Some results 
however of Table 3, specially those related to the failure of D4 desideratum, 
may appear less obvious to verify and that is why we give some numerical 
counter‐examples for them in the Tables 4 and 5 for convenience.4 These 
counter‐examples have been obtained from Monte‐Carlo simulation of 
randomly generated BBAs for testing the desiderata. Of course, many more 
counter‐examples can be found by Monte‐Carlo simulation, but of course only 
one is sufficient to prove the failure of a MoU for a desideratum, specially for 
D4. Extra justifications about violation of desiderata by some MoUs are 
presented next.  

The MoU1984(m) = 
X

m(X)log(m(X))


  does not satisfy D2 desideratum 

because MoU1984 v(m ) 0   whatever is the size of the FoD  . Consequently, 

MoU1984(m) > MoU1984(mv) if vm m , hence D4 desideratum is violated. That 

is why MoU1984(m) cannot be recommended as an effective measure of 

uncertainty.  
The MoU1990b(m) = T(m) does not satisfy D4 desideratum because we can 

have vm m such that T(m) = T(mv) as shown in the counter‐example given 

in52(p165). See also our simpler counter‐example given in Table 4.  
The MoU1992(m) = S(m) (i.e. the strife) does not satisfy D2 desideratum 

because one can easily verify that one has always5 
v vS(m ) S(m ) 0    when 

                                                           
3  The names and notations are not always homogeneous from one author to another, for 

instance U-uncertainty is also called non-specificity and denoted by N(m).39-41 

4  The numerical values have been truncated to their third digit. 
5  It is worth noting that Klir’s statement, at the bottom of page 86 of Klir and Wierman,8 stating 

(using our notation) that S(mv) = log(|Θ|) is clearly wrong. 
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   . The strife does not satisfy D4 either because if m is the uniform 

Bayesian BBA on (non‐empty) FoD  , one has S(m) log( )  which is greater 

than zero, proving that S(m) violates D4.  
The MoU1992b(m) = NS(m) does not satisfy D4 desideratum because we 

can have vm m  but such that NS(m) = NS(mv), as shown in the counter‐

example of Table 4, where6 U(m) log(2)  and S(m) log(3) log(2)  , so that 

NS(m) U(m) S(m) log(3)   , and we have U(mv) = log(3) and S(mv) = 0 yielding 

NS(mv) = log(3), and hence proving NS(m) = NS(mv).  

The MoU1994(m) = AU(m), proposed by Harmanec and Klir,39,40 is nothing 

but the maximal Shannon entropy value obtained by analyzing all the pmfs P(⋅) 
compatible with Bel(⋅) and Pl(⋅) functions of the BBA m(⋅) such that for all    

X , 
i

iX
Bel(X) P( ) Pl(X)

 
   . More precisely,  

i

i i
Allcompatible

pmf P(.)

P ( ) arg max P( )log(P( ))

 

       

This max‐entropy pmf P∗(⋅) is obtained by solving a non-linear optimization 
problem.86-88 It is clear that this MoU, as well as all other Shannon‐alike entropy 
measures based on different probabilistic approximations techniques 7 (as 
BetP‐entropy, PlPr‐entropy, or DSmP‐entropy, etc) of (non‐Bayesian) BBA m to 
a Bayesian BBA fail to satisfy D4 desideratum. Indeed, the vacuous BBA mv will 

always be approximated by the uniform pmf Punif(⋅) defined on the FoD  , 
and there will be no difference between the Shannon‐alike entropy value for 
mv (for the total ignorant source of evidence) and the Shannon‐alike entropy 

value of the Bayesian uniform BBA. This explains why AU(m) and all other 
Shannon‐alike entropies violate the D4 desideratum.  

The MoU1996(m) = TC(m) violates D2 because TC(mv) = 0 whatever is the 

dimension of the (non‐empty) FoD  . It violates D3, because for Bayesian BBA 

one gets 
n

i ii 1
TC(m) P( )(1 P( ))


    as reported in 45. It also violates D4 in gen-

eral because for Bayesian BBA one has TC(m) 0 , except in the particular Bayes-

ian case where the BBA is entirely focused on a singleton i (i.e. im( ) 1  ). In 

this particular case we obtain vTC(m) TC(m ) 0  . So for all Bayesian BBAs m we 

will always have vTC(m) TC(m ) , which clearly violates D4 desideratum.  

                                                           
6  The easy verification from U(m) and S(m) formulas is left to the readers. 
7  BetPm, DSmPm and PlPrm are different probabilistic transformations of a non‐Bayesian BBA 

into a Bayesian one. They have been proposed by different authors 89-91 providing details. 
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The original formula of MoU1997 (m) = dsH (m)  proposed by Maluf,57 was 

actually ds
X

H (m) Pl(X)log(Bel(X))


  which is obviously ill‐defined when 

Pl(X) 0 and Bel(X) 0 because log(0) . That is why we did consider only 

focal elements of the BBAs m in the modified formula dsH (m)  given in Table 1. 

For any cardinality of non‐empty FoD   we have always ds vH (m ) 0 because 

for the vacuous BBA mv, the only focal element is   for which Bel( ) Pl( ) 1   

so that ds vH (m ) Pl( )log(Bel( )) 1log(1) 0      . So, dsH (m) violates D2. This 

MoU violates also D4 because for Bayesian BBA dsH (m)  is the same as Shannon 

entropy, and Shannon entropy is greater than zero in general. 

The MoU2000(m) = SH (m) (Shapley entropy) coincides with Shannon en-

tropy for Bayesian BBAs, and one can easily verify that S vH (m ) log( )   which 

Table 1. List of existing MoUs for the period 1980-2000.  
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Table 2. List of existing MoUs for the period 2001-2021. 

 

is also the same maximum value of Shannon entropy for the uniform Bayesian 

BBA. Hence, SH (m)  is not the unique maximum measure of uncertainty value 

when we use Shapley entropy. It can also be verified that this maximum value 

can be also obtained by non‐Bayesian BBA. For instance, if  1 2 3, ,    and 

1 2 1 3 2 3m( ) m( ) m( ) 1 3         , then SH (m) log(3) , which is also the 

same value as for S vH (m ) . Because Shapley entropy proposed by Yager violates 

D4 desideratum, we cannot recommend it as an effective MoU. 
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Table 3. Desiderata verification, and effectiveness test results. 

 

The MoU2016(m) = dE (m) (Deng entropy) has recently aroused the interest 

and enthusiasm of some researchers because it was highly publicized by Deng 
during the last five years.14 We really wonder about such strong interest of this 
MoU because Deng entropy is obviously not effective, as proved by our simple 
counter‐example given in Table 5. Abellán has already pointed out the problem 
of Deng entropy.92 Nevertheless, some researchers try to use it, publicize it or 
improve it unsuccessfully as shown in our analysis summarized in Table 3. So, it 
is clear that Deng Entropy is not recommended for applications, as well as other 
generalizations (modifications or extensions) of it, as those recently proposed 
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by the same author (Rényi‐Deng (R‐D) entropy, Tsallis‐Deng (T‐D) entropy, 
Rényi‐Tsallis‐Deng (R‐T‐D) entropy, Interval‐valued Deng entropy, Fractal‐based 
belief Deng entropy, Deng entropy for orderable set, etc.; see for instance 93,94) 
because they do not have real interest since they are non-effective. We 
emphasize that even if a MoU collapses with Shannon entropy (as Deng entropy 
does) when a BBA is Bayesian, it can be non-effective and useless if it violates 
D4 desideratum. That is why Deng entropy (and all its recent variants based on 
it) is not effective as most of other MoUs actually reported in Table 3.  

The MoU2018b(m) = qH (m) (q‐entropy alike) violates D1 because qH (m)  

can be negative so its minimum value is not zero. For instance if  1 2 3, ,   

and 1 2 1 3 2 3m( ) m( ) m( ) 1 3         , then qH (m) 0.2877.  This MoU 

also violates D2 because q vH (m ) 0  whatever is the dimension of the (non‐

empty) FoD  . This MoU collapses with Shannon entropy because if m is a 
Bayesian BBA one has q(X) m(X)  for all X , and the focal elements of m are 

necessarily singletons X  for which X 1 , so that X
( 1) 1   , and 

consequently the mathematical definition of qH (m)  given in Table 1 is same as 

Shannon entropy. This MoU violates D4 because for Bayesian BBA Hq(m) is the 

same as Shannon entropy, and Shannon entropy is greater than zero in general8. 

For instance if  1 2 3, ,    and 1 2 3m( ) m( ) m( ) 1 3      , then 

qH (m) log( ) log(3) 0    . Hence q q vH (m) H (m ) .  

The MoU2018d(m) = belH (m) (Pan 1st entropy) violates D1 because if we 

consider the simplest case of FoD with  1 2,   , and the specific BBA 

1m( ) 1  , we have 

           1 1 2 2 1 2 1 2Bel( ),Pl( ) 1,1 , Bel( ),Pl( ) 0,0 and Bel( ),Pl( ) 1,1            

so we have 1 1 2 2(Bel( ) Pl( )) / 2 1, (Bel( ) Pl( )) / 2 0        and

1 2 1 2(Bel( ) Pl( )) / 2 1      .  Hence 
1 1 2

belH (m) 1log(1 / (2 1)) 0log(1 / (2 1)) 1log(1 / (2 1)) log(3) 0         . Pan 

1st entropy violates D3 (Shannon entropy consistency) too, because if m is the 

uniform Bayesian BBA given by 1 2m( ) m( ) 0.5    , then 

belH (m) 0.5log(0.5) 0.5log(0.5) 1log(1 / 3) log(2) log(3)      which is greater 

than Shannon entropy which is equal to 0.5log(0.5) 0.5log(0.5) log(2)   . Pan 

1st entropy violates D4 also because for the vacuous BBA v 1 2m ( ) 1   , one 

                                                           
8  Except in the case where m(θi) = 1 for some θi ∈ Θ.  
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has

           1 1 2 2 1 2 1 2Bel( ),Pl( ) 0,1 , Bel( ),Pl( ) 0,1 and Bel( ),Pl( ) 1,1             

 

and 1 1 2 2(Bel( ) Pl( )) / 2 0.5, (Bel( ) Pl( )) / 2 0.5          

and 1 2 1 2(Bel( ) Pl( )) / 2 1      ,  

so that belH (m) 0.5log(0.5) 0.5log(0.5) 1log(1 / 3) log(2) log(3)      , which is 

the same value as for uniform Bayesian BBA, so bel vH (m )  is not strictly greater 

than other Pan 1st entropy values.  
The formula of MoU2018e(m) = SU(m) (Wang entropy) has been kept with 

its original formulation (with log2(⋅) function) in Table 2, so it is expressed in bits. 
If one wants to express SU(m) in nats we must replace log2(⋅) function by the 

natural logarithm function log(⋅) and the second terms i i(Pl( ) Bel( )) / 2     must 

be multiplied by log(2) in the mathematical definition of SU(m) . 

For the MoU2019b(m) = CuiE (m) (Cui entropy) proposed in76, it is clear that 

the original mathematical definition of this entropy does not fit with the deri-
vations of what the authors have in mind when making their numerical 
examples in their paper because of a mistake in their exponential term. That is 

why we have to correct this term by replacing Y
Y X



 by Y
Y X&m(Y) 0

 

 in the 

original formula. Cui entropy violates D4 desideratum as shown in the example 
of Table 5. 

The MoU2019c(m) = PQH (m)  (Pan 2nd entropy) is not effective because 

PQ vH (m ) coincides with PQH (m) when m is the uniform Bayesian BBA, so it 

violates D4 desideratum. 

The MoU2019d(m) = iE (m) (Chen entropy) is not effective because one can 

have i i vE (m) E (m ) . For instance, consider the vacuous BBA vm on FoD 

 1 2 3, ,    , then i vE (m ) log(2 1) log(7) 1.9459
    , and if one considers 

the uniform Bayesian BBA for which 1 2 3m( ) m( ) m( ) 1 3      one gets 

i i v

1 1
E (m) log( . ) 2log(3) 2.1972 E (m )

3 3
     . So, Chen entropy violates D4 de-

sideratum.  

The MoU2019e(m) = interH (m) (Zhao entropy) is not effective because it 

violates D4 desideratum. As a simple counter‐example, consider  1 2 3, ,   

with the BBA 1 2 1 3 2 3m( ) m( ) m( ) 1 3         , then interH (m) 4.6291

nats, where for vacuous BBA vm ( ) 1  we get inter vH (m ) 4.4856  nats. Clearly, 
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inter inter vH (m) H (m )  which does not make sense because the vacuous BBA mv 
characterizes the most ignorant source of evidence.  

It is worth mentioning that the numerical examples given by Li and Cui in 
their paper are incorrect because they are inconsistent with their original new 
entropy formula (12) for IQmi.

 80 If we admit that the original Li’s definition of 

entropy is correct then we get the effectiveness test results listed for this 
entropy in Table 3, and we conclude that the MoU2020(m) = IQLi(m) (Li 

improved entropy) is not effective. If we consider that numerical examples by 
Li and Cui are correct, then we need to modify the exponent term in the original 

Li’s definition (12) of IQmi as Y
Y X&m(Y) 0

X Y /
 

  . In this case the 

effectiveness test result is worse because this modified Li improved entropy will 
fail to pass the four desiderata, and it is still non‐effective. 

The MoU2020b(m) = expU (m) (Wen entropy) violates clearly Shannon 

entropy compatibility desideratum D2, and for the vacuous BBA mv one has 

always exp vU (m ) 1 whatever is the dimension of the FoD  . Therefore Wen 

entropy does not verify desideratum D2. It is not certain that expU (m)  satisfies, 

or not, D4 desideratum, but we did thousands of Monte Carlo tests with random 
BBAs for different size of FoD  , and expU (m) did always pass successfully the 

D4 test, so we conjecture that Wen entropy satisfies D4. Even if our conjecture 
about satisfaction of D4 for expU (m)  is wrong, it does not change our conclusion 

that Wen entropy is not effective because it fails to verify D2 and D3.  

MoU2020c(m) = C
WdE (m) (Chen improved entropy) is not mathematically 

well‐defined because when the BBA m has only one focal element (i.e. 

F (m) 1  ), then one has a division by F (m) 1 0   which yields a NaN (Not a 

Number) indeterminate value in Table 3. Even if F (m) 1  this entropy is not 

compatible with Shannon entropy for Bayesian BBAs. So, Chen improved 
entropy is not effective.  

MoU2020d(m) = Q(m) (Qin entropy) violates D4 desideratum because Qin 

entropy takes same value log( )  for the vacuous BBA and for the uniform 

Bayesian BBA.  

MoU2020e(m) = nH (m) (Yan entropy) is non-effective. A counter‐example 

for D4 desideratum is given in Table 5 expressed in nats. To express them in bits 
we have of course to divide our results by log(2). It is worth noting that in Sec-

tion III.B of84, the numerical results given by Yan and Deng for n 3H (m ) and 

n 4H (m )  for their example 5 are wrong.  
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MoU2020f(m)= BFH (m)  (Li‐Pan entropy) is also non-effective. A counter‐

example for D4 desideratum is given in Table 4. 

Table 4. Counter-examples for some MoUs. 

 

Table 5. Counter-examples for some MoUs (continued). 

 

4. Discussion 

Our analysis of forty‐five measures of uncertainty covering 40 years of research 
in this field reveals that almost 89 % of them are non‐effective because they 
violate at least one of the four very essential desiderata D1, D2, D3 or D4. In our 

analysis only five MoUs (M(m) 1993, ext
PIPrH (m) , 2018, SU(m) 2018, ext

BetPH (m) , 2021, 
ext
DSmPH (m) , 2021) pass successfully the effectiveness test as we can observe in 

Table 3. We see that all these effective MoUs share two basic principles: 1) 
approximate the BBA m by a probability measure (i.e. a Bayesian BBA) Pm based 

on some method and evaluate its Shannon entropy to estimate the randomness 
(or conflict) inherent to the BBA, and 2) add a term to Shannon entropy value 
that estimates the level of ambiguity (or non-specificity) inherent of the BBA 
(usually thanks to Dubois & Prade U‐uncertainty). This general principle is sim-
ple and quite intuitive but it lacks seriously of theoretical justification. We 
consider such type of effective MoU construction is unfortunately conceptually 
flawed and not very satisfactory for the two following reasons.  
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● 1st reason: These effective MoUs highly depend on the choice of the method 
of approximation. This mechanism appears quite arbitrary, and we do no see 

any strong justification for preferring one of them, either P∗ in M(m) MoU, BetP 

in ext
DSmPH (m)  MoU, DSmP in ext

DSmPH (m)  MoU, mid belief‐interval value 

i i(Bel( ) Pl( )) / 2    in SU(m) MoU, etc. Worse, a method of approximation can 

be totally misleading as for instance Cobb‐Shenoy PlPrm transformation90 

because the evaluation of probabilities can be inconsistent with belief interval 

values. More precisely, one can have  m i i iPIPr ( ) Bel( ),Pl( )    with Cobb‐ 

Shenoy method, which is obviously not reasonable, nor acceptable at all. As a 
simple counter‐example of Cobb‐Shenoy transformation, just consider 

 1 2 3, ,     with 1m( ) 0.2   and 2 3m( ) 0.8   . Then, 

       1 1 2 2Bel( ),Pl( ) 0.2, 0.2 , Bel( ),Pl( ) 0, 0.8       and   3 3Bel( ),Pl( ) 0, 0.8    

Applying mPIPr transformation, we get m 1PIPr ( ) 0.2 / (0.2 0.8 0.8) 0.112     . 

Therefore m 1 1PIPr ( ) Bel( )   which shows that  m 1 1 1PIPr ( ) Bel( ),Pl( )    . We 

emphasize the fact that if a method of approximation of a BBA m by a 

probability measure mP  is chosen, it must be at least consistent with belief 

interval values generated by the BBA m under concern. Clearly, we cannot 
recommend Cobb‐Shenoy PlPrm transformation for building an effective MoU 

based on aforementioned principles 1) and 2) as ext
PIPrH (m)  MoU proposed 

recently by Jiroušek and Shenoy based on questionable Shafer semantics and 
fallacious Dempster’s rule arguments.  

● 2nd reason: More fundamentally, we do not see any serious reason which 
necessitates the arbitrary use of an approximation of any (non‐Bayesian) BBA 
by a Bayesian BBA at first for using Shannon entropy measure as 1st valid 
principle. Also why do we need, or request, to make the distinction of the two 
aspects of uncertainty (conflict and non‐specificity) in additive manner? This is 
conceptually very disputable because the randomness (or conflict) and 
ambiguity (or non-specificity) are actually interwoven in a subtle way that needs 
to be explored in deep for a better understanding of the mechanism governing 
the uncertainty with a better description of the (probably non‐additive) link 
between them.  

Very recently however Zhang et al. 104 did propose three new innovant 
effective MoUs not based on arbitrary approximation of the BBA by a 
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probability as in the aforementioned effective MoUs. These measures are 

denoted by 1H (m) , 2H (m) and 3H (m) and respectively defined by 9  

1
2 2

X X

H (m) m(X)log (Pl(X)) m(X)2log ( X )
 

    (5) 

X2
2 2

X X

H (m) m(X)log (Pl(X)) m(X)log (2 1)
 

      (6) 

3
2

X X
X 1

H (m) m(X)log (Pl(X)) m(X) X
 



     (7) 

These new effective MoUs differ conceptually from the previous effective 

MoUs M(m) , ext
PIPrH (m) , SU(m), ext

BetPH (m)  and ext
DSmPH (m)but the authors fail to 

capture well the interwoven link between conflict and non‐specificity (or 
imprecision). Actually the authors set arbitrarily the range of their MoU as a 

simple parameter, either taken as 2 20,2log ( ) , 0, log (2 1)      
or 0,   , to 

define their 1H (m) , 2H (m) and 3H (m) measures of uncertainty. This approach is 

rather ad‐hoc and very questionable and possibly other ranges could have been 
chosen instead. The authors do not identify (or propose) the best MoU to select 

between 1H (m) , 2H (m) and 3H (m) which is a serious problem for using them in 

applications. Which one to choose? The other serious problem in this approach 
is the lack of solid justification for using the plausibility function in the 

summation 2X
m(X)log (Pl(X))


 . Although effective, these three new MoUs 

are actually ill‐justified and heuristically defined, and somehow they can be 
considered as conceptually flawed. 

5. Conclusion 

In this paper we have clearly proved that most of existing measures of uncer-
tainty proposed during the last forty years are actually non-effective, and we 
consider that the effective ones are conceptually defective. We emphasize the 
fact that in this jungle of non‐effective measures, many of them have bloomed 
like mushrooms since 2016 with the publication of Deng’s paper because of its 
high publicity. Most of papers since 2016 do not pay attention to the four 
essential properties that an effective MoU must satisfy, which is a serious 
problem. We regret this matter of fact, and we hope that this paper has pointed 

                                                           
9  We correct here the definition of H3(m) which is mathematically badly formulated by Zhang 

et al.104  
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out clearly this concern, and also that it will help to reduce the proliferation of 
useless publications about non‐effective MoUs. We encourage the future 
authors working on new MoUs to verify the effectiveness of their MoU as done 
recently by Zhang et al.104 We agree with Abellán, Mantas and E. Bossé vision 
that an (effective) MoU should not be too complicate to calculate (with direct 
simple explicit mathematical formula), must obviously incorporate the two 
aspects of uncertainty (in a subtle and efficient interwoven manner), and must 
be sensitive to changes of evidence. At last any effective MoU must be 
conceptually strongly well‐justified. This is our roadmap for a search of better 
effective measures of uncertainty. Is there a better conceptual effective 
measure of uncertainty for the basic belief assignments? This is a very 
challenging question. We think that the development of new effective MoU not 
based on the additive decomposition of conflict and non‐specificity is possible 
as attempted recently by Zhang et al., and we hope that it will appear in a close 
future.  

Appendix 1: Shannon entropy 

Consider a random variable represented by a probability mass function (pmf) 

N 1 2 NP (p ,p ,...,p ) , where i ip P( )   is the probability of the i‐th state i (i.e. 

outcome) of  1 2 N, ,...,    . Shannon was interested in communication 

systems where the various events were the carriers of coded messages, and he 
did propose (and justify) his entropy measure as appropriate measure of 
average uncertainty (or measure of randomness) of a random variable17,18,21,22. 
In the classical information theory, the entropy of a random variable is the 
average level of surprisal, or uncertainty inherent in the variable’s possible 
outcomes.95 It is worth noting that Shannon theory does not concern the 
semantic aspects of the content of a message,46,96,97 but only its transmission 
through communication systems. Shannon entropy formula is defined by  

N i i
i 1

H(P ) P( )log(P( ))




     

 

(8) 

By convention, we take i i iP( )log(P( )) 0 if P( ) 0     which is easily justified by 

continuity since xlog(x) 0 as x 0  . Adding terms of zero probability does not 

change the entropy. In (8) we use the natural logarithm (i.e. base e logarithm) 
and in this case, the Shannon entropy value is expressed in nats unity. We can 

also use the base 2 logarithm ( 2log ) function instead of the natural logarithm, 

and if so the Shannon entropy value will be expressed in bits. In this case, the 
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entropy is the number of bits on average required to describe the random vari-
able, or equivalently the minimum expected number of binary questions 
required to determine the value of the random variable.  

Shannon entropy can be interpreted as a generalization of Hartley entropy 
(1928) 98,99  when presuming the pmf of equally probable states (i.e. uniform 

pmf unif
NP  for which iP( ) 1 /N for i 1,2,...,N   ), hence getting 

unif
NH(P ) log( ) log(N)   . Note that if we have a uniform pmf unif

NP defined on 

with N  and another uniform pmf unif
NP  defined on  with N   , and if 

    then unif unif
N NH(P ) H(P ) because log( ) log( )    since log(x)  is an 

increasing function. The minimum value of Shannon entropy is zero, which 
characterizes a non‐random (or sure) event j for which jP( ) 1  , because – 

i i j ji 1
P( )log(P( )) P( )log(P( )) 0




        .  

In fact, Shannon rarely used the term information (nor information 
content) in his works, and he preferred the term entropy to describe the 
scattering of symbols in the communication system. As reported by Tribus and 
McIrvine,100 in 1961 Shannon explained to Tribus his choice for naming the 
measure of uncertainty as entropy, instead of information as follows: “My 
greatest concern was what to call it. I thought of calling it ’information,’ but the 
word was overly used, so I decided to call it ’uncertainty.’ When I discussed it 
with John von Neumann, he had a better idea. Von Neumann told me, ’You 
should call it entropy, for two reasons. In the first place your uncertainty 
function has been used in statistical mechanics under that name, so it already 
has a name. In the second place, and more important, no one really knows what 
entropy really is, so in a debate you will always have the advantage.” Shannon 
did not prove that his entropy formula is the best measure of uncertainty, and 
even if it is a measure for information. He only stated a set of reasonable 
criteria 101 to describe a measure that would serve the requirements of his signal 
transmission theory, and he found that the entropy formula meets those 
criteria. We prefer to interpret Shannon entropy as a measure of uncertainty 
(or randomness) of a pmf, rather than a measure of information content,101 
because of multiple possible interpretations and definitions of information.  

The main algebraic properties of the Shannon entropy are (see 20, p.30 for 
details): the symmetry, the normality,10 expansibility, decisivity, additivity and 
recursivity. We recall that Shannon entropy value H(PN) is always smaller than 

unif unif
N N NH(P ) if P P , expressing the fact that the uniform pmf is the only pmf 

giving the maximal Shannon entropy value, and characterizing the maximum of 
                                                           
10  This stipulates that unif

2H(P ) 1  using base 2 logarithm function in (8).  
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uncertainty (or randomness), which is called the maximality property. Another 
important property of Shannon entropy is its subadditivity property when 
considering two (not necessarily independent) events,20(p.36) which can be for-
mulated by the following inequality  

 

N.N N NH(P ) H(P ) H(P )    (9) 

Where N.NP   is the joint pmf defined on Cartesian product space 

 i j( , ),i 1,2,...,N, j 1,2,...,N        . NP and NP  are marginal pmfs (i.e. the 

projections) of the joint pmf N.NP  on spaces (i.e. frames of discernments)   and 

 respectively.  

Appendix 2: Belief functions 

The belief functions (BF) have been introduced by Shafer 23 to model epistemic 
uncertainty to reason about uncertainty. We assume that the answer of the 
problem under concern belongs to a known finite discrete frame of 

discernement (FoD)  1 2 N, ,...,    , with n 1 , and where all elements of 

are exhaustive and exclusive. The set of all subsets of  (including empty set 

 , and  ) is the power‐set of  denoted by 2 . The number of elements (i.e. 

the cardinality) of 2  is 2 . A basic belief assignment (BBA) associated with a 

given source of evidence is a mapping  m(.):2 0,1   satisfying m( ) 0  and 

A 2
m(A) 1

 . The number m(A)  is called the mass of A committed by the 

source of evidence. The subset A 2 is called a focal element (FE) of the BBA 
m(.)  if and only if m(A) 0 . The set of all the focal elements of the BBA m(.) is 

noted by  F (m) X 2 |m(X) 0

    , or just F for shortand notation when there 

is no ambiguity on the FoD  and the BBA m we are using. The core C(m) of a 

BBA m is the union of all its focal elements, i.e 
X F (m)

C(m) X.


   

The belief of A denoted Bel(A) and the plausibility of A denoted Pl(A) are 
usually interpreted respectively as lower and upper bounds of an unknown 
(subjective) probability measure P(A). They are respectively defined for any 

A 2 from the BBA m(.) by  

X 2 |X A

Bel(A) m(X)
 

   (10) 

X 2 |A X

Pl(A) m(X) 1 Bel(A)
  

    (11) 
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where A represents the complement of A in  , that is 

   A \ A X|X andX A    . The symbol \ denotes the set difference op-

erator. Also, the commonality function q(⋅) defined for all 

X |A X
A by q(A) m(X)

 
   is involved in the some derivations, for instance 

in the definition of MoU1987(m) (cf Table 1). The vacuous BBA (VBBA for short) 

representing a totally ignorant source is defined by vm ( ) 1  . In this short 

presentation, we implicitly work on the FoD   and so we did omit to refer to it 
in our previous notations. If we have to work with BBAs defined on different 

FoDs, say  and  , then we will explicitly indicate these FoDs in the BBA 

notations as m (.)  and m (.) . In the classical theory of belief functions the 

combination of several distinct sources of evidence characterized by their BBAs 
defined on the same FoD is done with Dempster’s rule of combination, see the 
work of Shafer.23 To circumvent the problems of Dempster’s rule (e.g. its 
dictatorial behavior, its possible insensitivity to conflict level, its counter‐
intuitive results in high and low conflicting situations, etc), other rules have 
been developed in particular those based on proportional conflict redistribution 
(PCR) principles.102,103 
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